/**************************************************************************** * Copyright (C) 2017 Intel Corporation. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. ****************************************************************************/ #if !defined(__SIMD_LIB_AVX_HPP__) #error Do not include this file directly, use "simdlib.hpp" instead. #endif //============================================================================ // SIMD128 AVX (1) implementation //============================================================================ #define SIMD_WRAPPER_1(op) \ static SIMDINLINE Float SIMDCALL op(Float a) { return _mm_##op(a); } #define SIMD_WRAPPER_2(op) \ static SIMDINLINE Float SIMDCALL op(Float a, Float b) { return _mm_##op(a, b); } #define SIMD_DWRAPPER_2(op) \ static SIMDINLINE Double SIMDCALL op(Double a, Double b) { return _mm_##op(a, b); } #define SIMD_WRAPPER_2I(op) \ template \ static SIMDINLINE Float SIMDCALL op(Float a, Float b) \ { \ return _mm_##op(a, b, ImmT); \ } #define SIMD_DWRAPPER_2I(op) \ template \ static SIMDINLINE Double SIMDCALL op(Double a, Double b) \ { \ return _mm_##op(a, b, ImmT); \ } #define SIMD_WRAPPER_3(op) \ static SIMDINLINE Float SIMDCALL op(Float a, Float b, Float c) { return _mm_##op(a, b, c); } #define SIMD_IWRAPPER_1(op) \ static SIMDINLINE Integer SIMDCALL op(Integer a) { return _mm_##op(a); } #define SIMD_IWRAPPER_1I_(op, intrin) \ template \ static SIMDINLINE Integer SIMDCALL op(Integer a) \ { \ return intrin(a, ImmT); \ } #define SIMD_IWRAPPER_1I(op) SIMD_IWRAPPER_1I_(op, _mm_##op) #define SIMD_IWRAPPER_2_(op, intrin) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) { return intrin(a, b); } #define SIMD_IWRAPPER_2(op) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) { return _mm_##op(a, b); } #define SIMD_IFWRAPPER_2(op, intrin) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ { \ return castps_si(intrin(castsi_ps(a), castsi_ps(b))); \ } #define SIMD_IWRAPPER_2I(op) \ template \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ { \ return _mm_##op(a, b, ImmT); \ } //----------------------------------------------------------------------- // Single precision floating point arithmetic operations //----------------------------------------------------------------------- SIMD_WRAPPER_2(add_ps); // return a + b SIMD_WRAPPER_2(div_ps); // return a / b SIMD_WRAPPER_2(max_ps); // return (a > b) ? a : b SIMD_WRAPPER_2(min_ps); // return (a < b) ? a : b SIMD_WRAPPER_2(mul_ps); // return a * b SIMD_WRAPPER_1(rcp_ps); // return 1.0f / a SIMD_WRAPPER_1(rsqrt_ps); // return 1.0f / sqrt(a) SIMD_WRAPPER_2(sub_ps); // return a - b static SIMDINLINE Float SIMDCALL fmadd_ps(Float a, Float b, Float c) // return (a * b) + c { return add_ps(mul_ps(a, b), c); } static SIMDINLINE Float SIMDCALL fmsub_ps(Float a, Float b, Float c) // return (a * b) - c { return sub_ps(mul_ps(a, b), c); } template static SIMDINLINE Float SIMDCALL round_ps(Float a) { return _mm_round_ps(a, static_cast(RMT)); } static SIMDINLINE Float SIMDCALL ceil_ps(Float a) { return round_ps(a); } static SIMDINLINE Float SIMDCALL floor_ps(Float a) { return round_ps(a); } //----------------------------------------------------------------------- // Integer (various width) arithmetic operations //----------------------------------------------------------------------- SIMD_IWRAPPER_1(abs_epi32); // return absolute_value(a) (int32) SIMD_IWRAPPER_2(add_epi32); // return a + b (int32) SIMD_IWRAPPER_2(add_epi8); // return a + b (int8) SIMD_IWRAPPER_2(adds_epu8); // return ((a + b) > 0xff) ? 0xff : (a + b) (uint8) SIMD_IWRAPPER_2(max_epi32); // return (a > b) ? a : b (int32) SIMD_IWRAPPER_2(max_epu32); // return (a > b) ? a : b (uint32) SIMD_IWRAPPER_2(min_epi32); // return (a < b) ? a : b (int32) SIMD_IWRAPPER_2(min_epu32); // return (a < b) ? a : b (uint32) SIMD_IWRAPPER_2(mul_epi32); // return a * b (int32) // return (a * b) & 0xFFFFFFFF // // Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, // and store the low 32 bits of the intermediate integers in dst. SIMD_IWRAPPER_2(mullo_epi32); SIMD_IWRAPPER_2(sub_epi32); // return a - b (int32) SIMD_IWRAPPER_2(sub_epi64); // return a - b (int64) SIMD_IWRAPPER_2(subs_epu8); // return (b > a) ? 0 : (a - b) (uint8) //----------------------------------------------------------------------- // Logical operations //----------------------------------------------------------------------- SIMD_WRAPPER_2(and_ps); // return a & b (float treated as int) SIMD_IWRAPPER_2_(and_si, _mm_and_si128); // return a & b (int) SIMD_WRAPPER_2(andnot_ps); // return (~a) & b (float treated as int) SIMD_IWRAPPER_2_(andnot_si, _mm_andnot_si128); // return (~a) & b (int) SIMD_WRAPPER_2(or_ps); // return a | b (float treated as int) SIMD_IWRAPPER_2_(or_si, _mm_or_si128); // return a | b (int) SIMD_WRAPPER_2(xor_ps); // return a ^ b (float treated as int) SIMD_IWRAPPER_2_(xor_si, _mm_xor_si128); // return a ^ b (int) //----------------------------------------------------------------------- // Shift operations //----------------------------------------------------------------------- SIMD_IWRAPPER_1I(slli_epi32); // return a << ImmT SIMD_IWRAPPER_1I(slli_epi64); // return a << ImmT static SIMDINLINE Integer SIMDCALL sllv_epi32(Integer vA, Integer vB) // return a << b (uint32) { int32_t a, count; a = _mm_extract_epi32(vA, 0); count = _mm_extract_epi32(vB, 0); a <<= count; vA = _mm_insert_epi32(vA, a, 0); a = _mm_extract_epi32(vA, 1); count = _mm_extract_epi32(vB, 1); a <<= count; vA = _mm_insert_epi32(vA, a, 1); a = _mm_extract_epi32(vA, 2); count = _mm_extract_epi32(vB, 2); a <<= count; vA = _mm_insert_epi32(vA, a, 2); a = _mm_extract_epi32(vA, 3); count = _mm_extract_epi32(vB, 3); a <<= count; vA = _mm_insert_epi32(vA, a, 3); return vA; } SIMD_IWRAPPER_1I(srai_epi32); // return a >> ImmT (int32) SIMD_IWRAPPER_1I(srli_epi32); // return a >> ImmT (uint32) SIMD_IWRAPPER_1I_(srli_si, _mm_srli_si128); // return a >> (ImmT*8) (uint) static SIMDINLINE Integer SIMDCALL srl_epi64(Integer a, Integer n) { return _mm_srl_epi64(a, n); } template // same as srli_si, but with Float cast to int static SIMDINLINE Float SIMDCALL srlisi_ps(Float a) { return castsi_ps(srli_si(castps_si(a))); } static SIMDINLINE Integer SIMDCALL srlv_epi32(Integer vA, Integer vB) // return a >> b (uint32) { int32_t a, count; a = _mm_extract_epi32(vA, 0); count = _mm_extract_epi32(vB, 0); a >>= count; vA = _mm_insert_epi32(vA, a, 0); a = _mm_extract_epi32(vA, 1); count = _mm_extract_epi32(vB, 1); a >>= count; vA = _mm_insert_epi32(vA, a, 1); a = _mm_extract_epi32(vA, 2); count = _mm_extract_epi32(vB, 2); a >>= count; vA = _mm_insert_epi32(vA, a, 2); a = _mm_extract_epi32(vA, 3); count = _mm_extract_epi32(vB, 3); a >>= count; vA = _mm_insert_epi32(vA, a, 3); return vA; } //----------------------------------------------------------------------- // Conversion operations //----------------------------------------------------------------------- static SIMDINLINE Float SIMDCALL castpd_ps(Double a) // return *(Float*)(&a) { return _mm_castpd_ps(a); } static SIMDINLINE Integer SIMDCALL castps_si(Float a) // return *(Integer*)(&a) { return _mm_castps_si128(a); } static SIMDINLINE Double SIMDCALL castsi_pd(Integer a) // return *(Double*)(&a) { return _mm_castsi128_pd(a); } static SIMDINLINE Double SIMDCALL castps_pd(Float a) // return *(Double*)(&a) { return _mm_castps_pd(a); } static SIMDINLINE Float SIMDCALL castsi_ps(Integer a) // return *(Float*)(&a) { return _mm_castsi128_ps(a); } static SIMDINLINE Float SIMDCALL cvtepi32_ps(Integer a) // return (float)a (int32 --> float) { return _mm_cvtepi32_ps(a); } static SIMDINLINE int32_t SIMDCALL cvtsi128_si32(Integer a) // return a.v[0] { return _mm_cvtsi128_si32(a); } static SIMDINLINE Integer SIMDCALL cvtsi32_si128(int32_t n) // return a[0] = n, a[1]...a[3] = 0 { return _mm_cvtsi32_si128(n); } SIMD_IWRAPPER_1(cvtepu8_epi16); // return (int16)a (uint8 --> int16) SIMD_IWRAPPER_1(cvtepu8_epi32); // return (int32)a (uint8 --> int32) SIMD_IWRAPPER_1(cvtepu16_epi32); // return (int32)a (uint16 --> int32) SIMD_IWRAPPER_1(cvtepu16_epi64); // return (int64)a (uint16 --> int64) SIMD_IWRAPPER_1(cvtepu32_epi64); // return (int64)a (uint32 --> int64) static SIMDINLINE Integer SIMDCALL cvtps_epi32(Float a) // return (int32)a (float --> int32) { return _mm_cvtps_epi32(a); } static SIMDINLINE Integer SIMDCALL cvttps_epi32(Float a) // return (int32)a (rnd_to_zero(float) --> int32) { return _mm_cvttps_epi32(a); } //----------------------------------------------------------------------- // Comparison operations //----------------------------------------------------------------------- template static SIMDINLINE Float SIMDCALL cmp_ps(Float a, Float b) // return a (CmpTypeT) b { return _mm_cmp_ps(a, b, static_cast(CmpTypeT)); } static SIMDINLINE Float SIMDCALL cmplt_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpgt_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpneq_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpeq_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpge_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmple_ps(Float a, Float b) { return cmp_ps(a, b); } SIMD_IWRAPPER_2(cmpeq_epi8); // return a == b (int8) SIMD_IWRAPPER_2(cmpeq_epi16); // return a == b (int16) SIMD_IWRAPPER_2(cmpeq_epi32); // return a == b (int32) SIMD_IWRAPPER_2(cmpeq_epi64); // return a == b (int64) SIMD_IWRAPPER_2(cmpgt_epi8); // return a > b (int8) SIMD_IWRAPPER_2(cmpgt_epi16); // return a > b (int16) SIMD_IWRAPPER_2(cmpgt_epi32); // return a > b (int32) SIMD_IWRAPPER_2(cmpgt_epi64); // return a > b (int64) SIMD_IWRAPPER_2(cmplt_epi32); // return a < b (int32) static SIMDINLINE bool SIMDCALL testz_ps(Float a, Float b) // return all_lanes_zero(a & b) ? 1 : 0 (float) { return 0 != _mm_testz_ps(a, b); } static SIMDINLINE bool SIMDCALL testz_si(Integer a, Integer b) // return all_lanes_zero(a & b) ? 1 : 0 (int) { return 0 != _mm_testz_si128(a, b); } //----------------------------------------------------------------------- // Blend / shuffle / permute operations //----------------------------------------------------------------------- SIMD_WRAPPER_2I(blend_ps); // return ImmT ? b : a (float) SIMD_WRAPPER_3(blendv_ps); // return mask ? b : a (float) static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Float mask) // return mask ? b : a (int) { return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), mask)); } static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Integer mask) // return mask ? b : a (int) { return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), castsi_ps(mask))); } static SIMDINLINE Float SIMDCALL broadcast_ss(float const* p) // return *p (all elements in vector get same value) { return _mm_broadcast_ss(p); } SIMD_IWRAPPER_2(packs_epi16); // See documentation for _mm_packs_epi16 and _mm512_packs_epi16 SIMD_IWRAPPER_2(packs_epi32); // See documentation for _mm_packs_epi32 and _mm512_packs_epi32 SIMD_IWRAPPER_2(packus_epi16); // See documentation for _mm_packus_epi16 and _mm512_packus_epi16 SIMD_IWRAPPER_2(packus_epi32); // See documentation for _mm_packus_epi32 and _mm512_packus_epi32 static SIMDINLINE Integer SIMDCALL permute_epi32(Integer a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (float) { return castps_si(_mm_permutevar_ps(castsi_ps(a), swiz)); } static SIMDINLINE Float SIMDCALL permute_ps(Float a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (float) { return _mm_permutevar_ps(a, swiz); } SIMD_IWRAPPER_1I(shuffle_epi32); template static SIMDINLINE Integer SIMDCALL shuffle_epi64(Integer a, Integer b) = delete; SIMD_IWRAPPER_2(shuffle_epi8); SIMD_DWRAPPER_2I(shuffle_pd); SIMD_WRAPPER_2I(shuffle_ps); SIMD_IWRAPPER_2(unpackhi_epi16); // SIMD_IFWRAPPER_2(unpackhi_epi32, _mm_unpackhi_ps); static SIMDINLINE Integer SIMDCALL unpackhi_epi32(Integer a, Integer b) { return castps_si(_mm_unpackhi_ps(castsi_ps(a), castsi_ps(b))); } SIMD_IWRAPPER_2(unpackhi_epi64); SIMD_IWRAPPER_2(unpackhi_epi8); SIMD_DWRAPPER_2(unpackhi_pd); SIMD_WRAPPER_2(unpackhi_ps); SIMD_IWRAPPER_2(unpacklo_epi16); SIMD_IFWRAPPER_2(unpacklo_epi32, _mm_unpacklo_ps); SIMD_IWRAPPER_2(unpacklo_epi64); SIMD_IWRAPPER_2(unpacklo_epi8); SIMD_DWRAPPER_2(unpacklo_pd); SIMD_WRAPPER_2(unpacklo_ps); //----------------------------------------------------------------------- // Load / store operations //----------------------------------------------------------------------- template static SIMDINLINE Float SIMDCALL i32gather_ps(float const* p, Integer idx) // return *(float*)(((int8*)p) + (idx * ScaleT)) { uint32_t* pOffsets = (uint32_t*)&idx; Float vResult; float* pResult = (float*)&vResult; for (uint32_t i = 0; i < SIMD_WIDTH; ++i) { uint32_t offset = pOffsets[i]; offset = offset * static_cast(ScaleT); pResult[i] = *(float const*)(((uint8_t const*)p + offset)); } return vResult; } static SIMDINLINE Float SIMDCALL load1_ps(float const* p) // return *p (broadcast 1 value to all elements) { return broadcast_ss(p); } static SIMDINLINE Float SIMDCALL load_ps(float const* p) // return *p (loads SIMD width elements from memory) { return _mm_load_ps(p); } static SIMDINLINE Integer SIMDCALL load_si(Integer const* p) // return *p { return _mm_load_si128(&p->v); } static SIMDINLINE Float SIMDCALL loadu_ps(float const* p) // return *p (same as load_ps but allows for unaligned mem) { return _mm_loadu_ps(p); } static SIMDINLINE Integer SIMDCALL loadu_si(Integer const* p) // return *p (same as load_si but allows for unaligned mem) { return _mm_lddqu_si128(&p->v); } // for each element: (mask & (1 << 31)) ? (i32gather_ps(p, idx), mask = 0) : old template static SIMDINLINE Float SIMDCALL mask_i32gather_ps(Float old, float const* p, Integer idx, Float mask) { uint32_t* pOffsets = (uint32_t*)&idx; Float vResult = old; float* pResult = (float*)&vResult; DWORD index; uint32_t umask = movemask_ps(mask); while (_BitScanForward(&index, umask)) { umask &= ~(1 << index); uint32_t offset = pOffsets[index]; offset = offset * static_cast(ScaleT); pResult[index] = *(float const*)(((uint8_t const*)p + offset)); } return vResult; } static SIMDINLINE void SIMDCALL maskstore_ps(float* p, Integer mask, Float src) { _mm_maskstore_ps(p, mask, src); } static SIMDINLINE uint32_t SIMDCALL movemask_epi8(Integer a) { return static_cast(_mm_movemask_epi8(a)); } static SIMDINLINE uint32_t SIMDCALL movemask_pd(Double a) { return static_cast(_mm_movemask_pd(a)); } static SIMDINLINE uint32_t SIMDCALL movemask_ps(Float a) { return static_cast(_mm_movemask_ps(a)); } static SIMDINLINE Integer SIMDCALL set1_epi32(int i) // return i (all elements are same value) { return _mm_set1_epi32(i); } static SIMDINLINE Integer SIMDCALL set1_epi8(char i) // return i (all elements are same value) { return _mm_set1_epi8(i); } static SIMDINLINE Float SIMDCALL set1_ps(float f) // return f (all elements are same value) { return _mm_set1_ps(f); } static SIMDINLINE Float SIMDCALL setzero_ps() // return 0 (float) { return _mm_setzero_ps(); } static SIMDINLINE Integer SIMDCALL setzero_si() // return 0 (integer) { return _mm_setzero_si128(); } static SIMDINLINE void SIMDCALL store_ps(float* p, Float a) // *p = a (stores all elements contiguously in memory) { _mm_store_ps(p, a); } static SIMDINLINE void SIMDCALL store_si(Integer* p, Integer a) // *p = a { _mm_store_si128(&p->v, a); } static SIMDINLINE void SIMDCALL storeu_si(Integer* p, Integer a) // *p = a (same as store_si but allows for unaligned mem) { _mm_storeu_si128(&p->v, a); } static SIMDINLINE void SIMDCALL stream_ps(float* p, Float a) // *p = a (same as store_ps, but doesn't keep memory in cache) { _mm_stream_ps(p, a); } static SIMDINLINE Float SIMDCALL set_ps(float in3, float in2, float in1, float in0) { return _mm_set_ps(in3, in2, in1, in0); } static SIMDINLINE Integer SIMDCALL set_epi32(int in3, int in2, int in1, int in0) { return _mm_set_epi32(in3, in2, in1, in0); } template static SIMDINLINE float SIMDCALL extract_ps(Float a) { int tmp = _mm_extract_ps(a, ImmT); return *reinterpret_cast(&tmp); } static SIMDINLINE Float SIMDCALL vmask_ps(int32_t mask) { Integer vec = set1_epi32(mask); const Integer bit = set_epi32(0x08, 0x04, 0x02, 0x01); vec = and_si(vec, bit); vec = cmplt_epi32(setzero_si(), vec); return castsi_ps(vec); } #undef SIMD_WRAPPER_1 #undef SIMD_WRAPPER_2 #undef SIMD_DWRAPPER_2 #undef SIMD_DWRAPPER_2I #undef SIMD_WRAPPER_2I #undef SIMD_WRAPPER_3 #undef SIMD_IWRAPPER_1 #undef SIMD_IWRAPPER_2 #undef SIMD_IFWRAPPER_2 #undef SIMD_IWRAPPER_2I #undef SIMD_IWRAPPER_1 #undef SIMD_IWRAPPER_1I #undef SIMD_IWRAPPER_1I_ #undef SIMD_IWRAPPER_2 #undef SIMD_IWRAPPER_2_ #undef SIMD_IWRAPPER_2I