
Python Reference Manual
Release 1.5.1

Guido van Rossum

August 6, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics.
Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it
very attractive for rapid application development, as well as for use as a scripting or glue language to
connect existing components together. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules and packages, which
encourages program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and can be freely
distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but
attempts to be exact and complete. The semantics of non-essential built-in object types and of the built-
in functions and modules are described in the Python Library Reference. For an informal introduction
to the language, see the Python Tutorial. For C or C++ programmers, two additional manuals exist:
Extending and Embedding the Python Interpreter describes the high-level picture of how to write a Python
extension module, and the Python/C API Reference Manual describes the interfaces available to C/C++
programmers in detail.

CONTENTS

1 Introduction 1
1.1 Notation . 1

2 Lexical analysis 3
2.1 Line structure . 3
2.2 Other tokens . 5
2.3 Identifiers and keywords . 5
2.4 Literals . 6
2.5 Operators . 9
2.6 Delimiters . 9

3 Data model 11
3.1 Objects, values and types . 11
3.2 The standard type hierarchy . 12
3.3 Special method names . 16

4 Execution model 23
4.1 Code blocks, execution frames, and namespaces . 23
4.2 Exceptions . 24

5 Expressions 27
5.1 Arithmetic conversions . 27
5.2 Atoms . 27
5.3 Primaries . 29
5.4 The power operator . 32
5.5 Unary arithmetic operations . 32
5.6 Binary arithmetic operations . 32
5.7 Shifting operations . 33
5.8 Binary bit-wise operations . 33
5.9 Comparisons . 34
5.10 Boolean operations . 35
5.11 Expression lists . 35
5.12 Summary . 36

6 Simple statements 37
6.1 Expression statements . 37
6.2 Assert statements . 37
6.3 Assignment statements . 38
6.4 The pass statement . 39
6.5 The del statement . 40
6.6 The print statement . 40
6.7 The return statement . 40
6.8 The raise statement . 41
6.9 The break statement . 41

i

6.10 The continue statement . 41
6.11 The import statement . 41
6.12 The global statement . 42
6.13 The exec statement . 43

7 Compound statements 45
7.1 The if statement . 45
7.2 The while statement . 46
7.3 The for statement . 46
7.4 The try statement . 47
7.5 Function definitions . 48
7.6 Class definitions . 49

8 Top-level components 51
8.1 Complete Python programs . 51
8.2 File input . 51
8.3 Interactive input . 51
8.4 Expression input . 52

Index 53

ii

CHAPTER

ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications
for everything except syntax and lexical analysis. This should make the document more understandable
to the average reader, but will leave room for ambiguities. Consequently, if you were coming from Mars
and tried to re-implement Python from this document alone, you might have to guess things and in
fact you would probably end up implementing quite a different language. On the other hand, if you are
using Python and wonder what the precise rules about a particular area of the language are, you should
definitely be able to find them here. If you would like to see a more formal definitition of the language,
maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the im-
plementation may change, and other implementations of the same language may work differently. On
the other hand, there is currently only one Python implementation in widespread use (although a sec-
ond one now exists!), and its particular quirks are sometimes worth being mentioned, especially where
the implementation imposes additional limitations. Therefore, you’ll find short “implementation notes”
sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not
documented here, but in the separate Python Library Reference document. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the
following style of definition:

name: lc_letter (lc_letter | "_")*

lc_letter: "a"..."z"

The first line says that a name is an lc letter followed by a sequence of zero or more lc letters and
underscores. An lc letter in turn is any of the single characters ‘a’ through ‘z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical bar (|) is
used to separate alternatives; it is the least binding operator in this notation. A star (*) means zero or
more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and a phrase
enclosed in square brackets ([]) means zero or one occurrences (in other words, the enclosed phrase is
optional). The * and + operators bind as tightly as possible; parentheses are used for grouping. Literal
strings are enclosed in quotes. White space is only meaningful to separate tokens. Rules are normally
contained on a single line; rules with many alternatives may be formatted alternatively with each line
after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters
separated by three dots mean a choice of any single character in the given (inclusive) range of ascii

1

characters. A phrase between angular brackets (<...>) gives an informal description of the symbol
defined; e.g., this could be used to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of
lexical and syntactic definitions: a lexical definition operates on the individual characters of the input
source, while a syntax definition operates on the stream of tokens generated by the lexical analysis. All
uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subsequent chapters
are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER

TWO

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical
analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ascii character set for program text and string literals. 8-bit characters may be
used in string literals and comments but their interpretation is platform dependent; the proper way to
insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is generally a
superset of ascii.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters
is ISO Latin-1 (an ascii superset that covers most western languages that use the Latin alphabet), but
it is possible that in the future Unicode text editors will become common. These generally use the
UTF-8 encoding, which is also an ascii superset, but with very different use for the characters with
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-1
or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the
source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a number of logical lines.

Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line
boundaries except where NEWLINE is allowed by the syntax (e.g., between statements in compound
statements). A logical line is constructed from one or more physical lines by following the explicit or
implicit line joining rules.

Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On Unix,
this is the ascii LF (linefeed) character. On DOS/Windows, it is the ascii sequence CR LF (return
followed by linefeed). On Macintosh, it is the ascii CR (return) character.

Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of
the physical line. A comment signifies the end of the logical line unless the implicit line joining rules are
invoked. Comments are ignored by the syntax; they are not tokens.

3

Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows:
when a physical line ends in a backslash that is not part of a string literal or comment, it is joined with
the following forming a single logical line, deleting the backslash and the following end-of-line character.
For example:

if 1900 < year < 2100 and 1 <= month <= 12 \

and 1 <= day <= 31 and 0 <= hour < 24 \

and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A
backslash does not continue a token except for string literals (i.e., tokens other than string literals cannot
be split across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string
literal.

Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line
without using backslashes. For example:

month_names = [’Januari’, ’Februari’, ’Maart’, # These are the

’April’, ’Mei’, ’Juni’, # Dutch names

’Juli’, ’Augustus’, ’September’, # for the months

’Oktober’, ’November’, ’December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important.
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines.
Implicitly continued lines can also occur within triple-quoted strings (see below); in that case they cannot
carry comments.

Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no
NEWLINE token is generated), except that during interactive input of statements, an entirely blank
logical line (i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters
up to and including the replacement is a multiple of eight (this is intended to be the same rule as used
by Unix). The total number of spaces preceding the first non-blank character then determines the line’s
indentation. Indentation cannot be split over multiple physical lines using backslashes; the whitespace
up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms,
it is unwise to use a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; it will be ignored for the indentation cal-
culations above. A formfeed characters occurring elsewhere in the leading whitespace have an undefined
effect (for instance, they may reset the space count to zero).

4 Chapter 2. Lexical analysis

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped
off again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At
the beginning of each logical line, the line’s indentation level is compared to the top of the stack. If it is
equal, nothing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated.
If it is smaller, it must be one of the numbers occurring on the stack; all numbers on the stack that are
larger are popped off, and for each number popped off a DEDENT token is generated. At the end of the
file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):

Compute the list of all permutations of l

if len(l) <= 1:

return [l]

r = []

for i in range(len(l)):

s = l[:i] + l[i+1:]

p = perm(s)

for x in p:

r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

def perm(l): # error: first line indented

for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]

p = perm(l[:i] + l[i+1:]) # error: unexpected indent

for x in p:

r.append(l[i:i+1] + x)

return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical
analyzer — the indentation of return r does not match a level popped off the stack.)

Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and
formfeed can be used interchangeably to separate tokens. Whitespace is needed between two tokens only
if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token, but a b
is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, key-
words, literals, operators, and delimiters. Whitespace characters (other than line terminators, discussed
earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the
longest possible string that forms a legal token, when read from left to right.

2.3 Identi�ers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions:

2.2. Other tokens 5

identifier: (letter|"_") (letter|digit|"_")*

letter: lowercase | uppercase

lowercase: "a"..."z"

uppercase: "A"..."Z"

digit: "0"..."9"

Identifiers are unlimited in length. Case is significant.

Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as
ordinary identifiers. They must be spelled exactly as written here:

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass

def finally in print

Reserved classes of identi�ers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Form Meaning
* Not imported by ‘from module import *’
* System-defined name
* Class-private name mangling

(XXX need section references here.)

2.4 Literals

Literals are notations for constant values of some built-in types.

String literals

String literals are described by the following lexical definitions:

stringliteral: shortstring | longstring

shortstring: "’" shortstringitem* "’" | ’"’ shortstringitem* ’"’

longstring: "’’’" longstringitem* "’’’" | ’"""’ longstringitem* ’"""’

shortstringitem: shortstringchar | escapeseq

longstringitem: longstringchar | escapeseq

shortstringchar: <any ASCII character except "\" or newline or the quote>

longstringchar: <any ASCII character except "\">

escapeseq: "\" <any ASCII character>

In plain English: String literals can be enclosed in matching single quotes (’) or double quotes ("). They
can also be enclosed in matching groups of three single or double quotes (these are generally referred to
as triple-quoted strings). The backslash (\) character is used to escape characters that otherwise have a
special meaning, such as newline, backslash itself, or the quote character. String literals may optionally

6 Chapter 2. Lexical analysis

be prefixed with a letter ‘r’ or ‘R’; such strings are called raw strings and use different rules for backslash
escape sequences.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three
unescaped quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e.
either ’ or ".)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules similar
to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning
\newline Ignored
\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ascii Bell (BEL)
\b ascii Backspace (BS)
\f ascii Formfeed (FF)
\n ascii Linefeed (LF)
\r ascii Carriage Return (CR)
\t ascii Horizontal Tab (TAB)
\v ascii Vertical Tab (VT)
\ooo ascii character with octal value ooo
\xhh... ascii character with hex value hh...

In strict compatibility with Standard C, up to three octal digits are accepted, but an unlimited number
of hex digits is taken to be part of the hex escape (and then the lower 8 bits of the resulting hex number
are used in 8-bit implementations).

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash
is left in the string. (This behavior is useful when debugging: if an escape sequence is mistyped, the
resulting output is more easily recognized as broken.)

When an ‘r’ or ‘R’ prefix is present, backslashes are still used to quote the following character, but
all backslashes are left in the string. For example, the string literal r"\n" consists of two characters:
a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the backslash
remains in the string; for example, r""̈ is a valid string literal consisting of two characters: a backslash
and a double quote; r"¨ is not a value string literal (even a raw string cannot end in an odd number
of backslashes). Specifically, a raw string cannot end in a single backslash (since the backslash would
escape the following quote character).

String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" ’world’ is equivalent
to "helloworld". This feature can be used to reduce the number of backslashes needed, to split long
strings conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore

"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’
operator must be used to concatenate string expressions at run time. Also note that literal concatenation
can use different quoting styles for each component (even mixing raw strings and triple quoted strings).

2.4. Literals 7

Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and
imaginary numbers. There are no complex literals (complex numbers can be formed by adding a real
number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the unary operator ‘-’ and the literal 1.

Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger: integer ("l"|"L")

integer: decimalinteger | octinteger | hexinteger

decimalinteger: nonzerodigit digit* | "0"

octinteger: "0" octdigit+

hexinteger: "0" ("x"|"X") hexdigit+

nonzerodigit: "1"..."9"

octdigit: "0"..."7"

hexdigit: digit|"a"..."f"|"A"..."F"

Although both lower case ‘l’ and upper case ‘L’ are allowed as suffix for long integers, it is strongly
recommended to always use ‘L’, since the letter ‘l’ looks too much like the digit ‘1’.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, using 32-bit
arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but values larger than
2147483647 are converted to a negative value by subtracting 4294967296. There is no limit for long
integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7 2147483647 0177 0x80000000

3L 79228162514264337593543950336L 0377L 0x100000000L

Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber: pointfloat | exponentfloat

pointfloat: [intpart] fraction | intpart "."

exponentfloat: (nonzerodigit digit* | pointfloat) exponent

intpart: nonzerodigit digit* | "0"

fraction: "." digit+

exponent: ("e"|"E") ["+"|"-"] digit+

Note that the integer part of a floating point number cannot look like an octal integer. The allowed
range of floating point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the operator - and the literal 1.

8 Chapter 2. Lexical analysis

Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber: (floatnumber | intpart) ("j"|"J")

An imaginary literals yields a complex number with a real part of 0.0. Complex numbers are represented
as a pair of floating point numbers and have the same restrictions on their range. To create a complex
number with a nonzero real part, add a floating point number to it, e.g., (3+4j). Some examples of
imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / %

<< >> & | ^ ~

< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same operator. != is the preferred
spelling; <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

, : . ‘ = ;

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a
special meaning as ellipses in slices.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise
significant to the lexical analyzer:

’ " # \

The following printing ascii characters are not used in Python. Their occurrence outside string literals
and comments is an unconditional error:

@ $?

2.5. Operators 9

10

CHAPTER

THREE

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or
by relations between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored
program computer,” code is also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been
created; you may think of it as the object’s address in memory. The ‘is’ operator compares the identity
of two objects; the ‘id()’ function returns an integer representing its identity (currently implemented
as its address). An object’s type is also unchangeable. It determines the operations that an object
supports (e.g., “does it have a length?”) and also defines the possible values for objects of that type.
The ‘type()’ function returns an object’s type (which is an object itself). The value of some objects can
change. Objects whose value can change are said to be mutable; objects whose value is unchangeable once
they are created are called immutable. An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-
collected. An implementation is allowed to postpone garbage collection or omit it altogether — it is
a matter of implementation quality how garbage collection is implemented, as long as no objects are
collected that are still reachable. (Implementation note: the current implementation uses a reference-
counting scheme which collects most objects as soon as they become unreachable, but never collects
garbage containing circular references.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that
would normally be collectable. Also note that catching an exception with a ‘try...except’ statement
may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is under-
stood that these resources are freed when the object is garbage-collected, but since garbage collection
is not guaranteed to happen, such objects also provide an explicit way to release the external resource,
usually a close() method. Programs are strongly recommended to explicitly close such objects. The
‘try...finally’ statement provides a convenient way to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are
tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk
about the value of a container, we imply the values, not the identities of the contained objects; however,
when we talk about the mutability of a container, only the identities of the immediately contained objects
are implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its
value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in
some sense: for immutable types, operations that compute new values may actually return a reference
to any existing object with the same type and value, while for mutable objects this is not allowed. E.g.,
after “a = 1; b = 1”, a and b may or may not refer to the same object with the value one, depending
on the implementation, but after “c = []; d = []”, c and d are guaranteed to refer to two different,
unique, newly created empty lists. (Note that “c = d = []” assigns the same object to both c and d.)

11

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define
additional types. Future versions of Python may add types to the type hierarchy (e.g., rational numbers,
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes
that provide access to the implementation and are not intended for general use. Their definition may
change in the future. There are also some ‘generic’ special attributes, not listed with the individual
objects: methods is a list of the method names of a built-in object, if it has any; members is
a list of the data attribute names of a built-in object, if it has any.

None This type has a single value. There is a single object with this value. This object is accessed
through the built-in name None. It is used to signify the absence of a value in many situations,
e.g., it is returned from functions that don’t explicitly return anything. Its truth value is false.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed
through the built-in name Ellipsis. It is used to indicate the presence of the “...” syntax in a
slice. Its truth value is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never
changes. Python numbers are of course strongly related to mathematical numbers, but subject to
the limitations of numerical representation in computers.

Python distinguishes between integers and floating point numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are two types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size, but not smaller.)
When the result of an operation falls outside this range, the exception OverflowError
is raised. For the purpose of shift and mask operations, integers are assumed to have a
binary, 2’s complement notation using 32 or more bits, and hiding no bits from the user
(i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual)
memory only. For the purpose of shift and mask operations, a binary representation is
assumed, and negative numbers are represented in a variant of 2’s complement which
gives the illusion of an infinite string of sign bits extending to the left.

The rules for integer representation are intended to give the most meaningful interpretation of
shift and mask operations involving negative integers and the least surprises when switching
between the plain and long integer domains. For any operation except left shift, if it yields
a result in the plain integer domain without causing overflow, it will yield the same result in
the long integer domain or when using mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture and C implementation for the
accepted range and handling of overflow. Python does not support single-precision floating
point numbers; the savings in CPU and memory usage that are usually the reason for using
these is dwarfed by the overhead of using objects in Python, so there is no reason to complicate
the language with two kinds of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and
imaginary value of a complex number z can be retrieved through the attributes z.real and
z.imag.

Sequences These represent finite ordered sets indexed by natural numbers. The built-in function len()
returns the number of items of a sequence. When the lenth of a sequence is n, the index set contains
the numbers 0, 1, . . . , n-1. Item i of sequence a is selected by a[i].

12 Chapter 3. Data model

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j . When
used as an expression, a slice is a sequence of the same type. This implies that the index set is
renumbered so that it starts at 0.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created.
(If the object contains references to other objects, these other objects may be mutable and
may be changed; however, the collection of objects directly referenced by an immutable object
cannot change.)
The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character
is represented by a string of one item. Characters represent (at least) 8-bit bytes. The
built-in functions chr() and ord() convert between characters and nonnegative integers
representing the byte values. Bytes with the values 0-127 usually represent the corre-
sponding ascii values, but the interpretation of values is up to the program. The string
data type is also used to represent arrays of bytes, e.g., to hold data read from a file.
(On systems whose native character set is not ascii, strings may use EBCDIC in their
internal representation, provided the functions chr() and ord() implement a mapping
between ascii and EBCDIC, and string comparison preserves the ascii order. Or perhaps
someone can propose a better rule?)

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are
formed by comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can
be formed by affixing a comma to an expression (an expression by itself does not create
a tuple, since parentheses must be usable for grouping of expressions). An empty tuple
can be formed by an empty pair of parentheses.

Mutable sequences Mutable sequences can be changed after they are created. The subscription
and slicing notations can be used as the target of assignment and del (delete) statements.

There is currently a single mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-
separated list of expressions in square brackets. (Note that there are no special cases
needed to form lists of length 0 or 1.)

The extension module array provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation
a[k] selects the item indexed by k from the mapping a; this can be used in expressions and as the
target of assignments or del statements. The built-in function len() returns the number of items
in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only
types of values not acceptable as keys are values containing lists or dictionaries or other
mutable types that are compared by value rather than by object identity, the reason being
that the efficient implementation of dictionaries requires a key’s hash value to remain constant.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (e.g., 1 and 1.0) then they can be used interchangeably to index the same
dictionary entry.
Dictionaries are mutable; they are created by the ... notation (see section 5.2, “Dictionary
Displays”).
The extension modules dbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3, “Calls”) can
be applied:

User-defined functions A user-defined function object is created by a function definition (see
section 7.5, “Function definitions”). It should be called with an argument list containing the
same number of items as the function’s formal parameter list.

3.2. The standard type hierarchy 13

Special read-only attributes: func doc or doc is the function’s documentation string,
or None if unavailable; func name or name is the function’s name; func defaults is a
tuple containing default argument values for those arguments that have defaults, or None if
no arguments have a default value; func code is the code object representing the compiled
function body; func globals is (a reference to) the dictionary that holds the function’s global
variables — it defines the global namespace of the module in which the function was defined.
Additional information about a function’s definition can be retrieved from its code object; see
the description of internal types below.

User-defined methods A user-defined method object combines a class, a class instance (or None)
and a user-defined function.
Special read-only attributes: im self is the class instance object, im func is the function
object; im class is the class that defined the method (which may be a base class of the
class of which im self is an instance); doc is the method’s documentation (same as
im func. doc); name is the method name (same as im func. name).
User-defined method objects are created in two ways: when getting an attribute of a class
that is a user-defined function object, or when getting an attributes of a class instance that
is a user-defined function object. In the former case (class attribute), the im self attribute
is None, and the method object is said to be unbound; in the latter case (instance attribute),
im self is the instance, and the method object is said to be bound. For instance, when C is
a class which contains a definition for a function f, C.f does not yield the function object f;
rather, it yields an unbound method object m where m.im class is C, m.im function is f,
and m.im self is None. When x is a C instance, x.f yields a bound method object m where
m.im class is C, m.im function is f, and m.im self is x.
When an unbound user-defined method object is called, the underlying function (im func)
is called, with the restriction that the first argument must be an instance of the proper class
(im class) or of a derived class thereof.
When a bound user-defined method object is called, the underlying function (im func) is
called, inserting the class instance (im self) in front of the argument list. For instance,
when C is a class which contains a definition for a function f, and x is an instance of C, calling
x.f(1) is equivalent to calling C.f(x, 1).
Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to a local variable and call that local variable.
Also notice that this transformation only happens for user-defined functions; other callable
objects (and all non-callable objects) are retrieved without transformation.

Built-in functions A built-in function object is a wrapper around a C function. Examples of
built-in functions are len() and math.sin() (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read-only
attributes: doc is the function’s documentation string, or None if unavailable; name
is the function’s name; self is set to None (but see the next item).

Built-in methods This is really a different disguise of a built-in function, this time containing
an object passed to the C function as an implicit extra argument. An example of a built-in
method is list.append(), assuming list is a list object. In this case, the special read-only
attribute self is set to the object denoted by list.

Classes Class objects are described below. When a class object is called, a new class instance
(also described below) is created and returned. This implies a call to the class’s init ()
method if it has one. Any arguments are passed on to the init () method. If there is
no init () method, the class must be called without arguments.

Class instances Class instances are described below. Class instances are callable only when the
class has a call method; x(arguments) is a shorthand for x. call (arguments).

Modules Modules are imported by the import statement (see section 6.11, “The import statement”).
A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the func globals attribute of functions defined in the module). Attribute references
are translated to lookups in this dictionary, e.g., m.x is equivalent to m. dict ["x"]. A module
object does not contain the code object used to initialize the module (since it isn’t needed once
the initialization is done).

14 Chapter 3. Data model

Attribute assignment updates the module’s namespace dictionary, e.g., “m.x = 1” is equivalent to
“m. dict ["x"] = 1”.

Special read-only attribute: dict is the module’s namespace as a dictionary object.

Predefined (writable) attributes: name is the module’s name; doc is the module’s doc-
umentation string, or None if unavailable; file is the pathname of the file from which the
module was loaded, if it was loaded from a file. The file attribute is not present for C
modules that are statically linked into the interpreter; for extension modules loaded dynamically
from a shared library, it is the pathname of the shared library file.

Classes Class objects are created by class definitions (see section 7.6, “Class definitions”). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to
lookups in this dictionary, e.g., “C.x” is translated to “C. dict ["x"]”. When the attribute
name is not found there, the attribute search continues in the base classes. The search is depth-
first, left-to-right in the order of occurrence in the base class list. When a class attribute reference
would yield a user-defined function object, it is transformed into an unbound user-defined method
object (see above). The im class attribute of this method object is the class in which the function
object was found, not necessarily the class for which the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes: name is the class name; module is the module name in which the
class was defined; dict is the dictionary containing the class’s namespace; bases is a
tuple (possibly empty or a singleton) containing the base classes, in the order of their occurrence
in the base class list; doc is the class’s documentation string, or None if undefined.

Class instances A class instance is created by calling a class object (see above). A class instance has
a namespace implemented as a dictionary which is the first place in which attribute references
are searched. When an attribute is not found there, and the instance’s class has an attribute by
that name, the search continues with the class attributes. If a class attribute is found that is a
user-defined function object (and in no other case), it is transformed into an unbound user-defined
method object (see above). The im class attribute of this method object is the class in which the
function object was found, not necessarily the class of the instance for which the attribute reference
was initiated. If no class attribute is found, and the object’s class has a getattr method,
that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary.
If the class has a setattr or delattr method, this is called instead of updating the
instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with
certain special names. See section 3.3, “Special method names.”

Special attributes: dict is the attribute dictionary; class is the instance’s class.

Files A file object represents an open file. File objects are created by the open() built-in function, and
also by os.popen(), os.fdopen(), and the makefile() method of socket objects (and perhaps by
other functions or methods provided by extension modules). The objects sys.stdin, sys.stdout
and sys.stderr are initialized to file objects corresponding to the interpreter’s standard input,
output and error streams. See the Python Library Reference for complete documentation of file
objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions
may change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The
difference between a code object and a function object is that the function object contains
an explicit reference to the function’s globals (the module in which it was defined), while a
code object contains no context; also the default argument values are stored in the function
object, not in the code object (because they represent values calculated at run-time). Unlike
function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.

3.2. The standard type hierarchy 15

Special read-only attributes: co name gives the function name; co argcount is the number
of positional arguments (including arguments with default values); co nlocals is the number
of local variables used by the function (including arguments); co varnames is a tuple con-
taining the names of the local variables (starting with the argument names); co code is a
string representing the sequence of bytecode instructions; co consts is a tuple containing the
literals used by the bytecode; co names is a tuple containing the names used by the bytecode;
co filename is the filename from which the code was compiled; co firstlineno is the first
line number of the function; co lnotab is a string encoding the mapping from byte code
offsets to line numbers (for detais see the source code of the interpreter); co stacksize is
the required stack size (including local variables); co flags is an integer encoding a number
of flags for the interpreter.
The following flag bits are defined for co flags: bit 2 is set if the function uses the
“*arguments” syntax to accept an arbitrary number of positional arguments; bit 3 is set
if the function uses the “**keywords” syntax to accept arbitrary keyword arguments; other
bits are used internally or reserved for future use. If a code object represents a function, the
first item in co consts is the documentation string of the function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects
(see below).
Special read-only attributes: f back is to the previous stack frame (towards the caller), or
None if this is the bottom stack frame; f code is the code object being executed in this
frame; f locals is the dictionary used to look up local variables; f globals is used for
global variables; f builtins is used for built-in (intrinsic) names; f restricted is a flag
indicating whether the function is executing in restricted execution mode; f lineno gives
the line number and f lasti gives the precise instruction (this is an index into the bytecode
string of the code object).
Special writable attributes: f trace, if not None, is a function called at the start of each source
code line (this is used by the debugger); f exc type, f exc value, f exc traceback rep-
resent the most recent exception caught in this frame.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object
is created when an exception occurs. When the search for an exception handler unwinds the
execution stack, at each unwound level a traceback object is inserted in front of the current
traceback. When an exception handler is entered, the stack trace is made available to the
program. (See section 7.4, “The try statement.”) It is accessible as sys.exc traceback, and
also as the third item of the tuple returned by sys.exc info(). The latter is the preferred
interface, since it works correctly when the program is using multiple threads. When the
program contains no suitable handler, the stack trace is written (nicely formatted) to the
standard error stream; if the interpreter is interactive, it is also made available to the user as
sys.last traceback.
Special read-only attributes: tb next is the next level in the stack trace (towards the frame
where the exception occurred), or None if there is no next level; tb frame points to the
execution frame of the current level; tb lineno gives the line number where the exception
occurred; tb lasti indicates the precise instruction. The line number and last instruction in
the traceback may differ from the line number of its frame object if the exception occurred in
a try statement with no matching except clause or with a finally clause.

Slice objects Slice objects are used to represent slices when extended slice syntax is used. This is
a slice using two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:step],
a[i:j, k:l], or a[..., i:j]). They are also created by the built-in slice() function.
Special read-only attributes: start is the lowerbound; stop is the upperbound; step is the
step value; each is None if omitted. These attributes can have any type.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic op-
erations or subscripting and slicing) by defining methods with special names. For instance, if a class
defines a method named getitem (), and x is an instance of this class, then x[i] is equivalent to

16 Chapter 3. Data model

x. getitem (i). (The reverse is not true — if x is a list object, x. getitem (i) is not equiv-
alent to x[i].) Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined.

Basic customization

init (self, [args...]) Called when the instance is created. The arguments are those passed
to the class constructor expression. If a base class has an init method the derived class’s

init method must explicitly call it to ensure proper initialization of the base class part of
the instance, e.g., “BaseClass. init (self, [args...])”.

del (self) Called when the instance is about to be destroyed. This is also called a destructor.
If a base class has a del () method, the derived class’s del () method must explicitly
call it to ensure proper deletion of the base class part of the instance. Note that it is possible
(though not recommended!) for the del () method to postpone destruction of the instance
by creating a new reference to it. It may then be called at a later time when this new reference is
deleted. It is not guaranteed that del () methods are called for objects that still exist when
the interpreter exits.

Programmer’s note: “del x” doesn’t directly call x. del () — the former decrements the
reference count for x by one, and the latter is only called when its reference count reaches zero.
Some common situations that may prevent the reference count of an object to go to zero include:
circular references between objects (e.g., a doubly-linked list or a tree data structure with parent
and child pointers); a reference to the object on the stack frame of a function that caught an
exception (the traceback stored in sys.exc traceback keeps the stack frame alive); or a reference
to the object on the stack frame that raised an unhandled exception in interactive mode (the
traceback stored in sys.last traceback keeps the stack frame alive). The first situation can only
be remedied by explicitly breaking the cycles; the latter two situations can be resolved by storing
None in sys.exc traceback or sys.last traceback.

Warning: due to the precarious circumstances under which del methods are invoked, ex-
ceptions that occur during their execution are ignored, and a warning is printed to sys.stderr
instead. Also, when del is invoked is response to a module being deleted (e.g., when ex-
ecution of the program is done), other globals referenced by the del method may already
have been deleted. For this reason, del methods should do the absolute minimum needed to
maintain external invariants. Python 1.5 guarantees that globals whose name begins with a single
underscore are deleted from their module before other globals are deleted; if no other references to
such globals exist, this may help in assuring that imported modules are still available at the time
when the del method is called.

repr (self) Called by the repr() built-in function and by string conversions (reverse quotes) to
compute the “official” string representation of an object. This should normally look like a valid
Python expression that can be used to recreate an object with the same value. This differs from

repr in that it doesn’t have to look like a valid Python expression: a more convenient or
concise representation may be used instead.

str (self) Called by the str() built-in function and by the print statement to compute the
“informal” string representation of an object.

cmp (self, other) Called by all comparison operations. Should return a negative integer if self
< other, zero if self == other, a positive integer if self > other. If no cmp () operation
is defined, class instances are compared by object identity (“address”). (Note: the restriction that
exceptions are not propagated by cmp has been removed in Python 1.5.)

hash (self) Called for the key object for dictionary operations, and by the built-in function
hash(). Should return a 32-bit integer usable as a hash value for dictionary operations. The
only required property is that objects which compare equal have the same hash value; it is advised
to somehow mix together (e.g., using exclusive or) the hash values for the components of the object
that also play a part in comparison of objects. If a class does not define a cmp () method it
should not define a hash () operation either; if it defines cmp () but not hash () its
instances will not be usable as dictionary keys. If a class defines mutable objects and implements

3.3. Special method names 17

a cmp () method it should not implement hash (), since the dictionary implementation
requires that a key’s hash value is immutable (if the object’s hash value changes, it will be in the
wrong hash bucket).

nonzero (self) Called to implement truth value testing; should return 0 or 1. When this method
is not defined, len is called, if it is defined (see below). If a class defines neither len
nor nonzero , all its instances are considered true.

Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment
to, or deletion of x.name) for class instances. For performance reasons, these methods are cached in
the class object at class definition time; therefore, they cannot be changed after the class definition is
executed.

getattr (self, name) Called when an attribute lookup has not found the attribute in the usual
places (i.e. it is not an instance attribute nor is it found in the class tree for self). name
is the attribute name. This method should return the (computed) attribute value or raise an
AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr is not called.
(This is an intentional asymmetry between getattr and setattr .) This is done both
for efficiency reasons and because otherwise setattr would have no way to access other
attributes of the instance. Note that at least for instance variables, you can fake total control by
not inserting any values in the instance attribute dictionary (but instead inserting them in another
object).

setattr (self, name, value) Called when an attribute assignment is attempted. This is called
instead of the normal mechanism (i.e. store the value in the instance dictionary). name is the
attribute name, value is the value to be assigned to it.

If setattr wants to assign to an instance attribute, it should not simply execute “self.name
= value” — this would cause a recursive call to itself. Instead, it should insert the value in the
dictionary of instance attributes, e.g., “self. dict [name] = value.”

delattr (self, name) Like setattr but for attribute deletion instead of assignment.

Emulating callable objects

call (self, [args...]) Called when the instance is “called” as a function; if this method is
defined, x(arg1, arg2, ...) is a shorthand for x. call (arg1, arg2, ...).

Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the
allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence,
and the method getslice () (see below) should be defined. It is also recommended that map-
pings provide methods keys(), values(), items(), has key(), get(), clear(), copy(), and update()
behaving similar to those for Python’s standard dictionary objects; mutable sequences should provide
methods append(), count(), index(), insert(), pop(), remove(), reverse() and sort(), like Python
standard list objects. Finally, sequence types should implement addition (meaning concatenation) and
multiplication (meaning repetition) by defining the methods add (), radd (), mul () and

rmul () described below; they should not define coerce () or other numerical operators.

len (self) Called to implement the built-in function len(). Should return the length of the
object, an integer >= 0. Also, an object that doesn’t define a nonzero () method and whose

len () method returns zero is considered to be false in a Boolean context.

18 Chapter 3. Data model

getitem (self, key) Called to implement evaluation of self[key]. For a sequence types, the
accepted keys should be integers. Note that the special interpretation of negative indices (if the
class wishes to emulate a sequence type) is up to the getitem () method.

setitem (self, key, value) Called to implement assignment to self[key]. Same note as for
getitem ().

delitem (self, key) Called to implement deletion of self[key]. Same note as for
getitem ().

Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. Immutable sequences methods
should only define getslice (); mutable sequences, should define all three three methods.

getslice (self, i, j) Called to implement evaluation of self[i:j]. The returned object
should be of the same type as self. Note that missing i or j in the slice expression are replaced
by zero or sys.maxint, respectively, and no further transformations on the indices is performed.
The interpretation of negative indices and indices larger than the length of the sequence is up to
the method.

setslice (self, i, j, sequence) Called to implement assignment to self[i:j]. Same notes
for i and j as for getslice ().

delslice (self, i, j) Called to implement deletion of self[i:j]. Same notes for i and j as
for getslice ().

Notice that these methods are only invoked when a single slice with a single colon is used. For slice
operations involving extended slice notation, getitem (), setitem () or delitem () is
called.

Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations
that are not supported by the particular kind of number implemented (e.g., bitwise operations for non-
integral numbers) should be left undefined.

add (self, other)
sub (self, other)
mul (self, other)
div (self, other)
mod (self, other)
divmod (self, other)

pow (self, other [, modulo])
lshift (self, other)
rshift (self, other)
and (self, other)
xor (self, other)
or (self, other)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(),
pow(), **, <<, >>, &, ^, |). For instance, to evaluate the expression x+y , where x is an instance of a
class that has an add () method, x. add (y) is called. Note that pow () should be
defined to accept an optional third argument if the ternary version of the built-in pow() function
is to be supported.

radd (self, other)
rsub (self, other)
rmul (self, other)

3.3. Special method names 19

rdiv (self, other)
rmod (self, other)
rdivmod (self, other)
rpow (self, other)
rlshift (self, other)
rrshift (self, other)
rand (self, other)
rxor (self, other)
ror (self, other)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(),
pow(), **, <<, >>, &, ^, |) with reversed operands. These functions are only called if the left
operand does not support the corresponding operation. For instance, to evaluate the expression
x-y , where y is an instance of a class that has an rsub () method, y. rsub (x) is called.
Note that ternary pow() will not try calling rpow () (the coercion rules would become too
complicated).

neg (self)
pos (self)
abs (self)
invert (self)

Called to implement the unary arithmetic operations (-, +, abs() and).

int (self)
long (self)
float (self)

Called to implement the built-in functions int(), long() and float(). Should return a value of
the appropriate type.

oct (self)
hex (self)

Called to implement the built-in functions oct() and hex(). Should return a string value.

coerce (self, other) Called to implement “mixed-mode” numeric arithmetic. Should either
return a 2-tuple containing self and other converted to a common numeric type, or None if
conversion is possible. When the common type would be the type of other, it is sufficient to return
None, since the interpreter will also ask the other object to attempt a coercion (but sometimes, if
the implementation of the other type cannot be changed, it is useful to do the conversion to the
other type here).

Coercion rules: to evaluate x op y , the following steps are taken (where op () and
rop () are the method names corresponding to op, e.g., if varop is ‘+’, add () and
radd () are used). If an exception occurs at any point, the evaluation is abandoned and

exception handling takes over.

0. If x is a string object and op is the modulo operator (%), the string formatting operation is
invoked and the remaining steps are skipped.

1. If x is a class instance:

1a. If x has a coerce () method: replace x and y with the 2-tuple returned by
x. coerce (y); skip to step 2 if the coercion returns None.

1b. If neither x nor y is a class instance after coercion, go to step 3.
1c. If x has a method op (), return x. op (y); otherwise, restore x and y to their

value before step 1a.

2. If y is a class instance:

2a. If y has a coerce () method: replace y and x with the 2-tuple returned by
y. coerce (x); skip to step 3 if the coercion returns None.

2b. If neither x nor y is a class instance after coercion, go to step 3.
2b. If y has a method rop (), return y. rop (x); otherwise, restore x and y to their

value before step 2a.

20 Chapter 3. Data model

3. We only get here if neither x nor y is a class instance.

3a. If op is ‘+’ and x is a sequence, sequence concatenation is invoked.
3b. If op is ‘*’ and one operand is a sequence and the other an integer, sequence repetition is

invoked.
3c. Otherwise, both operands must be numbers; they are coerced to a common type if possible,

and the numeric operation is invoked for that type.

3.3. Special method names 21

22

CHAPTER

FOUR

Execution model

4.1 Code blocks, execution frames, and namespaces

A code block is a piece of Python program text that can be executed as a unit, such as a module, a
class definition or a function body. Some code blocks (like modules) are normally executed only once,
others (like function bodies) may be executed many times. Code blocks may textually contain other
code blocks. Code blocks may invoke other code blocks (that may or may not be textually contained in
them) as part of their execution, e.g., by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block. A class
definition is a code block. Each command typed interactively is a separate code block; a script file (a
file given as standard input to the interpreter or specified on the interpreter command line the first
argument) is a code block; a script command (a command specified on the interpreter command line
with the ‘-c’ option) is a code block. The file read by the built-in function execfile() is a code block.
The string argument passed to the built-in function eval() and to the exec statement is a code block.
And finally, the expression read and evaluated by the built-in function input() is a code block.

A code block is executed in an execution frame. An execution frame contains some administrative
information (used for debugging), determines where and how execution continues after the code block’s
execution has completed, and (perhaps most importantly) defines two namespaces, the local and the
global namespace, that affect execution of the code block.

A namespace is a mapping from names (identifiers) to objects. A particular namespace may be referenced
by more than one execution frame, and from other places as well. Adding a name to a namespace is
called binding a name (to an object); changing the mapping of a name is called rebinding; removing a
name is unbinding. Namespaces are functionally equivalent to dictionaries (and often implemented as
dictionaries).

The local namespace of an execution frame determines the default place where names are defined and
searched. The global namespace determines the place where names listed in global statements are defined
and searched, and where names that are not bound anywhere in the current code block are searched.

Whether a name is local or global in a code block is determined by static inspection of the source text for
the code block: in the absence of global statements, a name that is bound anywhere in the code block
is local in the entire code block; all other names are considered global. The global statement forces
global interpretation of selected names throughout the code block. The following constructs bind names:
formal parameters to functions, import statements, class and function definitions (these bind the class
or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, or in the second position of an except clause header. Local names are searched only
on the local namespace; global names are searched only in the global and built-in namespace.1

A target occurring in a del statement is also considered bound for this purpose (though the actual
semantics are to “unbind” the name).

When a global name is not found in the global namespace, it is searched in the built-in namespace (which
is actually the global namespace of the module builtin). The built-in namespace associated with

1If the code block contains exec statements or the construct “‘from ...import *”’, the semantics of local names change:
local name lookup first searches the local namespace, then the global namespace and the built-in namespace.

23

the execution of a code block is actually found by looking up the name builtins is its global
namespace; this should be a dictionary or a module (in the latter case its dictionary is used). Normally,
the builtins namespace is the dictionary of the built-in module builtin (note: no ‘s’); if
it isn’t, restricted execution mode is in effect. When a name is not found at all, a NameError exception
is raised.

The following table lists the meaning of the local and global namespace for various types of code blocks.
The namespace for a particular module is automatically created when the module is first imported (i.e.,
when it is loaded). Note that in almost all cases, the global namespace is the namespace of the containing
module — scopes in Python do not nest!

Code block type Global namespace Local namespace Notes
Module n.s. for this module same as global
Script (file or command) n.s. for main same as global (1)
Interactive command n.s. for main same as global
Class definition global n.s. of containing block new n.s.
Function body global n.s. of containing block new n.s. (2)
String passed to exec statement global n.s. of containing block local n.s. of containing block (2), (3)
String passed to eval() global n.s. of caller local n.s. of caller (2), (3)
File read by execfile() global n.s. of caller local n.s. of caller (2), (3)
Expression read by input() global n.s. of caller local n.s. of caller

Notes:

n.s. means namespace

(1) The main module for a script is always called main ; “the filename don’t enter into it.”

(2) The global and local namespace for these can be overridden with optional extra arguments.

(3) The exec statement and the eval() and execfile() functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used for both.

The built-in functions globals() and locals() returns a dictionary representing the current global
and local namespace, respectively. The effect of modifications to this dictionary on the namespace are
undefined.2

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle
errors or other exceptional conditions. An exception is raised at the point where the error is detected; it
may be handled by the surrounding code block or by any code block that directly or indirectly invoked
the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A
Python program can also explicitly raise an exception with the raise statement. Exception handlers are
specified with the try ... except statement. The try ... finally statement specifies cleanup code which
does not handle the exception, but is executed whether an exception occurred or not in the preceding
code.

Python uses the “termination” model of error handling: an exception handler can find out what happened
and continue execution at an outer level, but it cannot repair the cause of the error and retry the failing
operation (except by re-entering the offending piece of code from the top).

2The current implementations return the dictionary actually used to implement the namespace, except for functions,
where the optimizer may cause the local namespace to be implemented differently, and locals() returns a read-only
dictionary.

24 Chapter 4. Execution model

When an exception is not handled at all, the interpreter terminates execution of the program, or returns
to its interactive main loop. In either case, it prints a stack backtrace, except when the exception is
SystemExit.

Exceptions are identified by string objects or class instances. Selection of a matching except clause
is based on object identity (i.e., two different string objects with the same value represent different
exceptions!) For string exceptions, the except clause must reference the same string object. For class
exceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (maybe None) is passed as the exception’s “parameter” or “value”;
this object does not affect the selection of an exception handler, but is passed to the selected exception
handler as additional information. For class exceptions, this object must be an instance of the exception
class being raised.

See also the description of the try and raise statements in chapter 7.

4.2. Exceptions 25

26

CHAPTER

FIVE

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe
syntax, not lexical analysis. When (one alternative of) a syntax rule has the form

name: othername

and no semantics are given, the semantics of this form of name are the same as for othername.

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted
to a common type,” the arguments are coerced using the coercion rules listed at the end of chapter 3. If
both arguments are standard numeric types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, if either argument is a long integer, the other is converted to long integer;

• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator).
Extensions can define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms
enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as
atoms. The syntax for atoms is:

atom: identifier | literal | enclosure

enclosure: parenth_form|list_display|dict_display|string_conversion

Identi�ers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a
name is assigned to anywhere in a code block (even in unreachable code), and is not mentioned in a
global statement in that code block, then it refers to a local name throughout that code block. When

27

it is not assigned to anywhere in the block, or when it is assigned to but also explicitly listed in a
global statement, it refers to a global name if one exists, else to a built-in name (and this binding may
dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a name is not
bound, an attempt to evaluate it raises a NameError exception.

Private name mangling:when an identifier that textually occurs in a class definition begins with two
or more underscore characters and does not end in two or more underscores, it is considered a “private
name” of that class. Private names are transformed to a longer form before code is generated for them.
The transformation inserts the class name in front of the name, with leading underscores removed, and
a single underscore inserted in front of the class name. For example, the identifier spam occurring
in a class named Ham will be transformed to Ham spam. This transformation is independent of the
syntactical context in which the identifier is used. If the transformed name is extremely long (longer
than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point
number, complex number) with the given value. The value may be approximated in the case of floating
point and imaginary (complex) literals. See section 2.4 for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than
its value. Multiple evaluations of literals with the same value (either the same occurrence in the program
text or a different occurrence) may obtain the same object or a different object with the same value.

Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form: "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least
one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for
literals apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The
exception is the empty tuple, for which parentheses are required — allowing unparenthesized “nothing”
in expressions would cause ambiguities and allow common typos to pass uncaught.

List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display: "[" [expression_list] "]"

A list display yields a new list object. If it has no expression list, the list object has no items. Otherwise,
the elements of the expression list are evaluated from left to right and inserted in the list object in that
order.

28 Chapter 5. Expressions

Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display: "{" [key_datum_list] "}"

key_datum_list: key_datum ("," key_datum)* [","]

key_datum: expression ":" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key
object is used as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in section 3.2. (To summarize,the key
type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not
detected; the last datum (textually rightmost in the display) stored for a given key value prevails.

String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion: "‘" expression_list "‘"

A string conversion evaluates the contained expression list and converts the resulting object into a string
according to rules specific to its type.

If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose
type is one of these, the resulting string is a valid Python expression which can be passed to the built-
in function eval() to yield an expression with the same value (or an approximation, if floating point
numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape
sequences that are safe to print.)

It is illegal to attempt to convert recursive objects (e.g., lists or dictionaries that contain a reference to
themselves, directly or indirectly.)

The built-in function repr() performs exactly the same conversion in its argument as enclosing it in
parentheses and reverse quotes does. The built-in function str() performs a similar but more user-
friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary: atom | attributeref | subscription | slicing | call

Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref: primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module or
a list. This object is then asked to produce the attribute whose name is the identifier. If this attribute

5.3. Primaries 29

is not available, the exception AttributeError is raised. Otherwise, the type and value of the object
produced is determined by the object. Multiple evaluations of the same attribute reference may yield
different objects.

Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription: primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key.
(The expression list is a tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative,
the length of the sequence is added to it (so that, e.g., x[-1] selects the last item of x.) The resulting
value must be a nonnegative integer less than the number of items in the sequence, and the subscription
selects the item whose index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one
character.

Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used
as expressions or as targets in assignment or del statements. The syntax for a slicing:

slicing: simple_slicing | extended_slicing

simple_slicing: primary "[" short_slice "]"

extended_slicing: primary "[" slice_list "]"

slice_list: slice_item ("," slice_item)* [","]

slice_item: expression | proper_slice | ellipsis

proper_slice: short_slice | long_slice

short_slice: [lower_bound] ":" [upper_bound]

long_slice: short_slice ":" [stride]

lower_bound: expression

upper_bound: expression

stride: expression

ellipsis: "..."

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a
slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax,
this is disambiguated by defining that in this case the interpretation as a subscription takes priority over
the interpretation as a slicing (this is the case if the slice list contains no proper slice nor ellipses).
Similarly, when the slice list has exactly one short slice and no trailing comma, the interpretation as a
simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The
lower and upper bound expressions, if present, must evaluate to plain integers; defaults are zero and the
sequence’s length, respectively. If either bound is negative, the sequence’s length is added to it. The
slicing now selects all items with index k such that i <= k < j where i and j are the specified lower and
upper bounds. This may be an empty sequence. It is not an error if i or j lie outside the range of valid
indexes (such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object,
and it is indexed with a key that is constructed from the slice list, as follows. If the slice list contains at

30 Chapter 5. Expressions

least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion
of the lone slice item is the key. The conversion of a slice item that is an expression is that expression.
The conversion of an ellipsis slice item is the built-in Ellipsis object. The conversion of a proper slice
is a slice object (see section 3.2) whose start, stop and step attributes are the values of the expressions
given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call: primary "(" [argument_list [","]] ")"

argument_list: positional_arguments ["," keyword_arguments]

| keyword_arguments

positional_arguments: expression ("," expression)*

keyword_arguments: keyword_item ("," keyword_item)*

keyword_item: identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of
built-in objects, class objects, methods of class instances, and certain class instances themselves are
callable; extensions may define additional callable object types). All argument expressions are evaluated
before the call is attempted. Please refer to section 7.5 for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First,
a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they
are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine
the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is
used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the value of
the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all
arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined;
thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that
don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are
any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the
list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is
raised, unless a formal parameter using the syntax “*identifier” is present; in this case, that formal
parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were
no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is
raised, unless a formal parameter using the syntax “**identifier” is present; in this case, that formal
parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys
and the argument values as corresponding values), or a (new) empty dictionary if there were no excess
keyword arguments.

Formal parameters using the syntax “*identifier” or “**identifier” cannot be used as positional
argument slots or as keyword argument names. Formal parameters using the syntax “(sublist)” cannot
be used as keyword argument names; the outermost sublist corresponds to a single unnamed argument
slot, and the argument value is assigned to the sublist using the usual tuple assignment rules after all
other parameter processing is done.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed
depends on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list.
The first thing the code block will do is bind the formal parameters to the arguments; this is

5.3. Primaries 31

described in section 7.5. When the code block executes a return statement, this specifies the
return value of the function call.

a built-in function or method: The result is up to the interpreter; see the library reference manual
for the descriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list
that is one longer than the argument list of the call: the instance becomes the first argument.

a class instance: The class must define a call () method; the effect is then the same as if that
method was called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary
operators on its right. The syntax is:

power: primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics as the built-in pow() function, when called with two argu-
ments: it yields its left argument raised to the power of its right argument. The numeric arguments are
first converted to a common type. The result type is that of the arguments after coercion; if the result
is not expressible in that type (as in raising an integer to a negative power, or a negative floating point
number to a broken power), a TypeError exception is raised.

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr: power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument.

The unary + (plus) operator yields its numeric argument unchanged.

The unary (invert) operator yields the bit-wise inversion of its plain or long integer argument. The
bit-wise inversion of x is defined as -(x+1). It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations
also apply to certain non-numeric types. Apart from the power operator, there are only two levels, one
for multiplicative operators and one for additive operators:

m_expr: u_expr | m_expr "*" u_expr

| m_expr "/" u_expr | m_expr "%" u_expr

a_expr: m_expr | aexpr "+" m_expr | aexpr "-" m_expr

32 Chapter 5. Expressions

The * (multiplication) operator yields the product of its arguments. The arguments must either both be
numbers, or one argument must be a plain integer and the other must be a sequence. In the former case,
the numbers are converted to a common type and then multiplied together. In the latter case, sequence
repetition is performed; a negative repetition factor yields an empty sequence.

The / (division) operator yields the quotient of its arguments. The numeric arguments are first converted
to a common type. Plain or long integer division yields an integer of the same type; the result is that
of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the first argument by the sec-
ond. The numeric arguments are first converted to a common type. A zero right argument raises the
ZeroDivisionError exception. The arguments may be floating point numbers, e.g., 3.14%0.7 equals
0.34 (since 3.14 equals 4*0.7 + 0.34.) The modulo operator always yields a result with the same
sign as its second operand (or zero); the absolute value of the result is strictly smaller than the second
operand.

The integer division and modulo operators are connected by the following identity: x == (x/y)*y +
(x%y). Integer division and modulo are also connected with the built-in function divmod(): divmod(x,
y) == (x/y, x%y). These identities don’t hold for floating point and complex numbers; there a similar
identity holds where x/y is replaced by floor(x/y)) or floor((x/y).real), respectively.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers
or both sequences of the same type. In the former case, the numbers are converted to a common type
and then added together. In the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first
converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr: a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common
type. They shift the first argument to the left or right by the number of bits given by the second
argument.

A right shift by n bits is defined as division by pow(2,n). A left shift by n bits is defined as multiplication
with pow(2,n); for plain integers there is no overflow check so in that case the operation drops bits and
flips the sign if the result is not less than pow(2,31) in absolute value. Negative shift counts raise a
ValueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and_expr: shift_expr | and_expr "&" shift_expr

xor_expr: and_expr | xor_expr "^" and_expr

or_expr: xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long
integers. The arguments are converted to a common type.

5.7. Shifting operations 33

The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers.
The arguments are converted to a common type.

5.9 Comparisons

Contrary to C, all comparison operations in Python have the same priority, which is lower than that of
any arithmetic, shifting or bitwise operation. Also contrary to C, expressions like a < b < c have the
interpretation that is conventional in mathematics:

comparison: or_expr (comp_operator or_expr)*

comp_operator: "<"|">"|"=="|">="|"<="|"<>"|"!="|"is" ["not"]|["not"] "in"

Comparisons yield integer values: 1 for true, 0 for false.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except
that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be
false).

Formally, if a, b, c, . . . , y , z are expressions and opa, opb, . . . , opy are comparison operators, then a
opa b opb c . . . y opy z is equivalent to a opa b and b opb c and . . . y opy z , except that each expression
is evaluated at most once.

Note that a opa b opb c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y >
z is perfectly legal (though perhaps not pretty).

The forms <> and != are equivalent; for consistency with C, != is preferred; where != is mentioned below
<> is also acceptable. At some point in the (far) future, <> may become obsolete.

The operators "<", ">", "==", ">=", "<=", and "!=" compare the values of two objects. The objects
needn’t have the same type. If both are numbers, they are coverted to a common type. Otherwise,
objects of different types always compare unequal, and are ordered consistently but arbitrarily.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and
the in and not in operators. In the future, the comparison rules for objects of different types are likely
to change.)

Comparison of objects of the same type depends on the type:

• Numbers are compared arithmetically.

• Strings are compared lexicographically using the numeric equivalents (the result of the built-in
function ord()) of their characters.

• Tuples and lists are compared lexicographically using comparison of corresponding items.

• Mappings (dictionaries) are compared through lexicographic comparison of their sorted (key, value)
lists.1

• Most other types compare unequal unless they are the same object; the choice whether one object
is considered smaller or larger than another one is made arbitrarily but consistently within one
execution of a program.

The operators in and not in test for sequence membership: if y is a sequence, x in y is true if and
only if there exists an index i such that x = y[i]. x not in y yields the inverse truth value. The
exception TypeError is raised when y is not a sequence, or when y is a string and x is not a string of
length one.2

The operators is and is not test for object identity: x is y is true if and only if x and y are the same
object. x is not y yields the inverse truth value.

1This is expensive since it requires sorting the keys first, but it is about the only sensible definition. An earlier version
of Python compared dictionaries by identity only, but this caused surprises because people expected to be able to test a
dictionary for emptiness by comparing it to {}.

2The latter restriction is sometimes a nuisance.

34 Chapter 5. Expressions

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression: or_test | lambda_form

or_test: and_test | or_test "or" and_test

and_test: not_test | and_test "and" not_test

not_test: comparison | "not" not_test

lambda_form: "lambda" [parameter_list]: expression

In the context of Boolean operations, and also when expressions are used by control flow statements,
the following values are interpreted as false: None, numeric zero of all types, empty sequences (strings,
tuples and lists), and empty mappings (dictionaries). All other values are interpreted as true.

The operator not yields 1 if its argument is false, 0 otherwise.

The expression x and y first evaluates x ; if x is false, its value is returned; otherwise, y is evaluated
and the resulting value is returned.

The expression x or y first evaluates x ; if x is true, its value is returned; otherwise, y is evaluated and
the resulting value is returned.

(Note that neither and nor or restrict the value and type they return to 0 and 1, but rather return
the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by
a default value if it is empty, the expression s or ’foo’ yields the desired value. Because not has to
invent a value anyway, it does not bother to return a value of the same type as its argument, so e.g., not
’foo’ yields 0, not ’’.)

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a short-
hand to create anonymous functions; the expression lambda arguments: expression yields a function
object that behaves virtually identical to one defined with

def name(arguments):

return expression

See section 7.5 for the syntax of parameter lists. Note that functions created with lambda forms cannot
contain statements.

Programmer’s note: a lambda form defined inside a function has no access to names defined in
the function’s namespace. This is because Python has only two scopes: local and global. A common
work-around is to use default argument values to pass selected variables into the lambda’s namespace,
e.g.:

def make_incrementor(increment):

return lambda x, n=increment: x+n

5.11 Expression lists

expression_list: expression ("," expression)* [","]

An expression (expression) list containing at least one comma yields a tuple. The length of the tuple is
the number of expressions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other
cases. A single expression (expression) without a trailing comma doesn’t create a tuple, but rather yields
the value of that expression (expression). (To create an empty tuple, use an empty pair of parentheses:

5.10. Boolean operations 35

().)

5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least bind-
ing) to highest precedence (most binding). Operators in the same box have the same precedence. Unless
the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except
for comparisons, which chain from left to right — see above).

Operator Description
lambda Lambda expression

or Boolean OR
and Boolean AND
not x Boolean NOT

in, not in Membership tests
is, is not Identity tests

<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND

<<, >> Shifts
+, - Addition and subtraction

*, /, % Multiplication, division, remainder
** Exponentiation

+x , -x Positive, negative
~x Bitwise not

x.attribute Attribute reference
x[index] Subscription

x[index:index] Slicing
f (arguments...) Function call
(expressions...) Binding or tuple display
[expressions...] List display
{key:datum...} Dictionary display
‘expressions...‘ String conversion

36 Chapter 5. Expressions

CHAPTER

SIX

Simple statements

Simple statements are comprised within a single logical line. Several simple statements may occur on a
single line separated by semicolons. The syntax for simple statements is:

simple_stmt: expression_stmt

| assert_stmt

| assignment_stmt

| pass_stmt

| del_stmt

| print_stmt

| return_stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| global_stmt

| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call
a procedure (a function that returns no meaningful result; in Python, procedures return the value None).
Other uses of expression statements are allowed and occasionally useful. The syntax for an expression
statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function
and the resulting string is written to standard output (see section 6.6) on a line by itself. (Expression
statements yielding None are not written, so that procedure calls do not cause any output.)

6.2 Assert statements

Assert statements are a convenient way to insert debugging assertions into a program:

assert_statement: "assert" expression ["," expression]

The simple form, “assert expression”, is equivalent to

37

if __debug__:

if not expression: raise AssertionError

The extended form, “assert expression1, expression2”, is equivalent to

if __debug__:

if not expression1: raise AssertionError, expression2

These equivalences assume that debug and AssertionError refer to the built-in variables with
those names. In the current implementation, the built-in variable debug is 1 under normal cir-
cumstances, 0 when optimization is requested (command line option -O). The current code generator
emits no code for an assert statement when optimization is requested at compile time. Note that it is
unnecessary to include the source code for the expression that failed in the error message; it will be
displayed as part of the stack trace.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable
objects:

assignment_stmt: (target_list "=")+ expression_list

target_list: target ("," target)* [","]

target: identifier | "(" target_list ")" | "[" target_list "]"

| attributeref | subscription | slicing

(See section 5.3 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or
a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the
target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of
a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately
perform the assignment and decide about its validity, and may raise an exception if the assignment is
unacceptable. The rules observed by various types and the exceptions raised are given with the definition
of the object types (see section 3.2).

Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: The object is assigned to that target.

• If the target list is a comma-separated list of targets: The object must be a sequence with the same
number of items as the there are targets in the target list, and the items are assigned, from left to
right, to the corresponding targets. (This rule is relaxed as of Python 1.5; in earlier versions, the
object had to be a tuple. Since strings are sequences, an assignment like “a, b = "xy"” is now
legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in a global statement in the current code block: the name is
bound to the object in the current local namespace.

– Otherwise: the name is bound to the object in the current global namespace.

38 Chapter 6. Simple statements

The name is rebound if it was already bound. This may cause the reference count for the object
previously bound to the name to reach zero, causing the object to be deallocated and its destructor
(if it has one) to be called.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be a
sequence with the same number of items as there are targets in the target list, and its items are
assigned, from left to right, to the corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It
should yield an object with assignable attributes; if this is not the case, TypeError is raised. That
object is then asked to assign the assigned object to the given attribute; if it cannot perform the
assignment, it raises an exception (usually but not necessarily AttributeError).

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield
either a mutable sequence object (e.g., a list) or a mapping object (e.g., a dictionary). Next, the
subscript expression is evaluated.

If the primary is a mutable sequence object (e.g., a list), the subscript must yield a plain integer.
If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative
integer less than the sequence’s length, and the sequence is asked to assign the assigned object
to its item with that index. If the index is out of range, IndexError is raised (assignment to a
subscripted sequence cannot add new items to a list).

If the primary is a mapping object (e.g., a dictionary), the subscript must have a type compatible
with the mapping’s key type, and the mapping is then asked to create a key/datum pair which
maps the subscript to the assigned object. This can either replace an existing key/value pair with
the same key value, or insert a new key/value pair (if no key with the same value existed).

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a
mutable sequence object (e.g., a list). The assigned object should be a sequence object of the same
type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults
are zero and the sequence’s length. The bounds should evaluate to (small) integers. If either bound
is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between
zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice
with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and
invalid syntax is rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and
the right-hand side are ‘safe’ (e.g., “a, b = b, a” swaps two variables), overlaps within the collection
of assigned-to variables are not safe! For instance, the following program prints “[0, 2]”:

x = [0, 1]

i = 0

i, x[i] = 1, 2

print x

6.4 The pass statement

pass_stmt: "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a
statement is required syntactically, but no code needs to be executed, for example:

6.4. The pass statement 39

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 The del statement

del_stmt: "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out
in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name (which must exist) from the local or global
namespace, depending on whether the name occurs in a global statement in the same code block.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved;
deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even
this is determined by the sliced object).

6.6 The print statement

print_stmt: "print" [expression ("," expression)* [","]]

print evaluates each expression in turn and writes the resulting object to standard output (see below).
If an object is not a string, it is first converted to a string using the rules for string conversions. The
(resulting or original) string is then written. A space is written before each object is (converted and)
written, unless the output system believes it is positioned at the beginning of a line. This is the case
(1) when no characters have yet been written to standard output, (2) when the last character written to
standard output is ‘
n’, or (3) when the last write operation on standard output was not a print statement. (In some cases
it may be functional to write an empty string to standard output for this reason.)

A ‘
n’ character is written at the end, unless the print statement ends with a comma. This is the only
action if the statement contains just the keyword print.

Standard output is defined as the file object named stdout in the built-in module sys. If no such object
exists, or if it does not have a write() method, a RuntimeError exception is raised.

6.7 The return statement

return_stmt: "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is
executed before really leaving the function.

40 Chapter 6. Simple statements

6.8 The raise statement

raise_stmt: "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last expression that was raised in the current scope.

Otherwose, raise evaluates its first expression, which must yield a string, class, or instance object. If
there is a second expression, this is evaluated, else None is substituted. If the first expression is a class
object, then the second expression must be an instance of that class or one of its derivatives. If the first
expression is an instance object, the second expression must be None.

If the first object is a class or string, it then raises the exception identified by the first object, with the
second one (or None) as its parameter. If the first object is an instance, it raises the exception identified
by the class of the object, with the instance as its parameter (and there should be no second object, or
the second object should be None).

If a third object is present, and it is not None, it should be a traceback object (see section 3.2), and it is
substituted instead of the current location as the place where the exception occurred. This is useful to
re-raise an exception transparently in an except clause.

6.9 The break statement

break_stmt: "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the loop.

6.10 The continue statement

continue_stmt: "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function
or class definition or try statement within that loop.1 It continues with the next cycle of the nearest
enclosing loop.

6.11 The import statement

import_stmt: "import" module ("," module)*

| "from" module "import" identifier ("," identifier)*

| "from" module "import" "*"

module: (identifier ".")* identifier

1It may occur within an except or else clause. The restriction on occurring in the try clause is implementer’s laziness
and will eventually be lifted.

6.8. The raise statement 41

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define
a name or names in the local namespace (of the scope where the import statement occurs). The first
form (without from) repeats these steps for each identifier in the list. The form with from performs step
(1) once, and then performs step (2) repeatedly.

The system maintains a table of modules that have been initialized, indexed by module name. This table
table accessible as sys.modules. When a module name is found in this table, step (1) is finished. If not,
a search for a module definition is started. When a module is found, it is loaded. Details of the module
searching and loading process are implementation and platform specific. It generally involves searching
for a “built-in” module with the given name and then searching a list of locations given as sys.path.

If a built-in module is found, its built-in initialization code is executed and step (1) is finished. If no
matching file is found, ImportError is raised. If a file is found, it is parsed, yielding an executable code
block. If a syntax error occurs, SyntaxError is raised. Otherwise, an empty module of the given name
is created and inserted in the module table, and then the code block is executed in the context of this
module. Exceptions during this execution terminate step (1).

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local namespace to the module object,
and then goes on to import the next identifier, if any. The from form does not bind the module name:
it goes through the list of identifiers, looks each one of them up in the module found in step (1), and
binds the name in the local namespace to the object thus found. If a name is not found, ImportError
is raised. If the list of identifiers is replaced by a star (*), all names defined in the module are bound,
except those beginning with an underscore().

Names bound by import statements may not occur in global statements in the same scope.

The from form with * may only occur in a module scope.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse
this freedom, as future implementations may enforce them or silently change the meaning of the program.)

Hierarchical module names: when the module names contains one or more dots, the module search
path is carried out differently. The sequence of identifiers up to the last dot is used to find a “package”;
the final identifier is then searched inside the package. A package is generally a subdirectory of a directory
on sys.path that has a file ‘ init .py’. [XXX Can’t be bothered to spell this out right now; see the
URL http://www.python.org/doc/essays/packages.html for more details, also about how the module search
works from inside a package.]

[XXX Also should mention import ().]

6.12 The global statement

global_stmt: "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the
listed identifiers are to be interpreted as globals. While using global names is automatic if they are not
defined in the local scope, assigning to global names would be impossible without global.

Names listed in a global statement must not be used in the same code block before that global
statement is executed.

Names listed in a global statement must not be defined as formal parameters or in a for loop control
target, class definition, function definition, or import statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse
this freedom, as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: the global is a directive to the parser. It applies only to code parsed at the
same time as the global statement. In particular, a global statement contained in an exec statement

42 Chapter 6. Simple statements

does not affect the code block containing the exec statement, and code contained in an exec statement
is unaffected by global statements in the code containing the exec statement. The same applies to the
eval(), execfile() and compile() functions.

6.13 The exec statement

exec_stmt: "exec" expression ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to
either a string, an open file object, or a code object. If it is a string, the string is parsed as a suite of
Python statements which is then executed (unless a syntax error occurs). If it is an open file, the file is
parsed until EOF and executed. If it is a code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first
expression after in is specified, it should be a dictionary, which will be used for both the global and the
local variables. If two expressions are given, both must be dictionaries and they are used for the global
and local variables, respectively.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those
corresponding to variable names set by the executed code. For example, the current implementation may
add a reference to the dictionary of the built-in module builtin under the key builtins (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval().
The built-in functions globals() and locals() return the current global and local dictionary, respec-
tively, which may be useful to pass around for use by exec.

6.13. The exec statement 43

44

CHAPTER

SEVEN

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those
other statements in some way. In general, compound statements span multiple lines, although in simple
incarnations a whole compound statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies excep-
tion handlers and/or cleanup code for a group of statements. Function and class definitions are also
syntactically compound statements.

Compound statements consist of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’
The clause headers of a particular compound statement are all at the same indentation level. Each
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group of
statements controlled by a clause. A suite can be one or more semicolon-separated simple statements on
the same line as the header, following the header’s colon, or it can be one or more indented statements on
subsequent lines. Only the latter form of suite can contain nested compound statements; the following
is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example,
either all or none of the print statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt: if_stmt | while_stmt | for_stmt

| try_stmt | funcdef | classdef

suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

statement: stmt_list NEWLINE | compound_stmt

stmt_list: simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional
continuation clauses always begin with a keyword that cannot start a statement, thus there are no
ambiguities (the ‘dangling else’ problem is solved in Python by requiring nested if statements to be
indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for
clarity.

7.1 The if statement

The if statement is used for conditional execution:

45

if_stmt: "if" expression ":" suite

("elif" expression ":" suite)*

["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true
(see section 5.10 for the definition of true and false); then that suite is executed (and no other part of
the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if
present, is executed.

7.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt: "while" expression ":" suite

["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false
(which may be the first time it is tested) the suite of the else clause, if present, is executed and the loop
terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s
suite. A continue statement executed in the first suite skips the rest of the suite and goes back to
testing the expression.

7.3 The for statement

The for statement is used to iterate over the elements of a sequence (string, tuple or list):

for_stmt: "for" target_list "in" expression_list ":" suite

["else" ":" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once for each
item in the sequence, in the order of ascending indices. Each item in turn is assigned to the target list
using the standard rules for assignments, and then the suite is executed. When the items are exhausted
(which is immediately when the sequence is empty), the suite in the else clause, if present, is executed,
and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s
suite. A continue statement executed in the first suite skips the rest of the suite and continues with the
next item, or with the else clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to
it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have
been assigned to at all by the loop. Hint: the built-in function range() returns a sequence of integers
suitable to emulate the effect of Pascal’s for i := a to b do; e.g., range(3) returns the list [0, 1,
2].

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for
mutable sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and
this is incremented on each iteration. When this counter has reached the length of the sequence the loop
terminates. This means that if the suite deletes the current (or a previous) item from the sequence, the
next item will be skipped (since it gets the index of the current item which has already been treated).
Likewise, if the suite inserts an item in the sequence before the current item, the current item will be

46 Chapter 7. Compound statements

treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making
a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:

if x < 0: a.remove(x)

7.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt: try_exc_stmt | try_fin_stmt

try_exc_stmt: "try" ":" suite

("except" [expression ["," target]] ":" suite)+

["else" ":" suite]

try_fin_stmt: "try" ":" suite

"finally" ":" suite

There are two forms of try statement: try...except and try...finally. These forms cannot be mixed
(but they can be nested in each other).

The try...except form specifies one or more exception handlers (the except clauses). When no exception
occurs in the try clause, no exception handler is executed. When an exception occurs in the try suite,
a search for an exception handler is started. This search inspects the except clauses in turn until one
is found that matches the exception. An expression-less except clause, if present, must be last; it
matches any exception. For an except clause with an expression, that expression is evaluated, and the
clause matches the exception if the resulting object is “compatible” with the exception. An object is
compatible with an exception if it is either the object that identifies the exception, or (for exceptions
that are classes) it is a base class of the exception, or it is a tuple containing an item that is compatible
with the exception. Note that the object identities must match, i.e. it must be the same object, not just
an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in the surround-
ing code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search
for a handler is cancelled and a search starts for the new exception in the surrounding code and on the
call stack (it is treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target specified
in that except clause, if present, and the except clause’s suite is executed. When the end of this suite
is reached, execution continues normally after the entire try statement. (This means that if two nested
handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,
the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three variables in
the sys module: sys.exc type receives the object identifying the exception; sys.exc value receives
the exception’s parameter; sys.exc traceback receives a traceback object (see section 3.2) identifying
the point in the program where the exception occurred. These details are also available through the
sys.exc info() function, which returns a tuple (exc type, exc value, exc traceback). Use of the
corresponding variables is deprecated in favor of this function, since their use is unsafe in a threaded
program. As of Python 1.5, the variables are restored to their previous values (before the call) when
returning from a function that handled an exception.

The optional else clause is executed when no exception occurs in the try clause. Exceptions in the
else clause are not handled by the preceding except clauses.

The try...finally form specifies a ‘cleanup’ handler. The try clause is executed. When no exception
occurs, the finally clause is executed. When an exception occurs in the try clause, the exception is
temporarily saved, the finally clause is executed, and then the saved exception is re-raised. If the

7.4. The try statement 47

finally clause raises another exception or executes a return, break or continue statement, the saved
exception is lost. The exception information is not available to the program during execution of the
finally clause.

When a return or break statement is executed in the try suite of a try...finally statement, the
finally clause is also executed ‘on the way out.’ A continue statement is illegal in the try clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the future).

7.5 Function de�nitions

A function definition defines a user-defined function object (see section 3.2):

funcdef: "def" funcname "(" [parameter_list] ")" ":" suite

parameter_list: (defparameter ",")* ("*" identifier [, "**" identifier]

| "**" identifier

| defparameter [","])

defparameter: parameter ["=" expression]

sublist: parameter ("," parameter)* [","]

parameter: identifier | "(" sublist ")"

funcname: identifier

A function definition is an executable statement. Its execution binds the function name in the current
local namespace to a function object (a wrapper around the executable code for the function). This
function object contains a reference to the current global namespace as the global namespace to be used
when the function is called.

The function definition does not execute the function body; this gets executed only when the function
is called.

When one or more top-level parameters have the form parameter = expression, the function is said to
have “default parameter values.” Default parameter values are evaluated when the function
definition is executed. For a parameter with a default value, the corresponding argument may be
omitted from a call, in which case the parameter’s default value is substituted. If a parameter has a
default value, all following parameters must also have a default value — this is a syntactic restriction
that is not expressed by the grammar.1

Function call semantics are described in more detail in section 5.3. A function call always assigns values to
all parameters mentioned in the parameter list, either from position arguments, from keyword arguments,
or from default values. If the form “*identifier” is present, it is initialized to a tuple receiving any
excess positional parameters, defaulting to the empty tuple. If the form “**identifier” is present, it
is initialized to a new dictionary receiving any excess keyword arguments, defaulting to a new empty
dictionary.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in
expressions. This uses lambda forms, described in section 5.10. Note that the lambda form is merely
a shorthand for a simplified function definition; a function defined in a “def” statement can be passed
around or assigned to another name just like a function defined by a lambda form. The “def” form is
actually more powerful since it allows the execution of multiple statements.

Programmer’s note: a “def” form executed inside a function definition defines a local function that
can be returned or passed around. Because of Python’s two-scope philosophy, a local function defined in
this way does not have access to the local variables of the function that contains its definition; the same
rule applies to functions defined by a lambda form. A standard trick to pass selected local variables into
a locally defined function is to use default argument values, like this:

1Currently this is not checked; instead, def f(a=1, b) is interpreted as def f(a=1, b=None).

48 Chapter 7. Compound statements

Return a function that returns its argument incremented by ’n’

def make_incrementer(n):

def increment(x, n=n):

return x+n

return increment

add1 = make_incrementer(1)

print add1(3) # This prints ’4’

7.6 Class de�nitions

A class definition defines a class object (see section 3.2):

classdef: "class" classname [inheritance] ":" suite

inheritance: "(" [expression_list] ")"

classname: identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each
item in the inheritance list should evaluate to a class object. The class’s suite is then executed in a
new execution frame (see section 4.1), using a newly created local namespace and the original global
namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes
execution, its execution frame is discarded but its local namespace is saved. A class object is then
created using the inheritance list for the base classes and the saved local namespace for the attribute
dictionary. The class name is bound to this class object in the original local namespace.

Programmer’s note: variables defined in the class definition are class variables; they are shared by all
instances. To define instance variables, they must be given a value in the the init () method or in
another method. Both class and instance variables are accessible through the notation “‘codeself.name”,
and an instance variable hides a class variable with the same name when accessed in this way. Class
variables with immutable values can be used as defaults for instance variables.

7.6. Class definitions 49

50

CHAPTER

EIGHT

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard
input or as program argument, typed in interactively, from a module source file, etc. This chapter gives
the syntax used in these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to
have a notion of a complete Python program. A complete Python program is executed in a minimally
initialized environment: all built-in and standard modules are available, but none have been initialized,
except for sys (various system services), builtin (built-in functions, exceptions and None) and

main . The latter is used to provide the local and global namespace for execution of the complete
program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a
complete program but reads and executes one statement (possibly compound) at a time. The initial
environment is identical to that of a coplete program; each statement is executed in the namespace of

main .

Under Unix, a complete program can be passed to the interpreter in three forms: with the -c string
command line option, as a file passed as the first command line argument, or as standard input. If the
file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it executes the
file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:

file_input: (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to the exec statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

51

interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this
is needed to help the parser detect the end of the input.

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval()
must have the following form:

eval_input: expression_list NEWLINE*

The input line read by input() must have the following form:

input_input: expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in function raw input() or
the readline() method of file objects.

52 Chapter 8. Top-level components

INDEX

Symbols
abs , 20
add , 18–20
and , 19, 20
bases , 15
builtin (built-in module), 24, 43, 51
builtins , 43
call , 18, 32
class , 15
cmp , 17, 18
coerce , 18, 20
debug , 38
del , 17
delattr , 18
delitem , 19
delslice , 19
dict , 15, 18
div , 19, 20
divmod , 19, 20
doc , 14, 15
file , 15
float , 20
getattr , 18
getitem , 17, 19
getslice , 19
hash , 18
hex , 20
import () (built-in function), 42
init , 14, 17
init .py , 42
int , 20
invert , 20
len , 18
long , 20
lshift , 19, 20
main (built-in module), 24, 51
members , 12
methods , 12
mod , 19, 20
module , 15
mul , 18–20
name , 14, 15
neg , 20
nonzero , 18
oct , 20
or , 19, 20

pos , 20
pow , 19, 20
radd , 18
repr , 17
rmul , 18
rshift , 19, 20
setattr , 18
setitem , 19
setslice , 19
str , 17
sub , 19, 20
xor , 19, 20

A
addition, 33
and

bit-wise, 33
and

operator, 35
anonmymous

function, 35
append , 18
argument

function, 13
arithmetic

conversion, 27
operation, binary, 32
operation, unary, 32

array (standard module), 13
ascii, 2, 6, 7, 9, 13
assert

statement, 37
AssertionError

exception, 38
assertions

debugging, 37
assignment

attribute, 38, 39
class attribute, 15
class instance attribute, 15
slicing, 39
statement, 13, 38
subscription, 39
target list, 38

atom, 27
attribute, 12

53

assignment, 38, 39
assignment, class, 15
assignment, class instance, 15
class, 15
class instance, 15
deletion, 40
generic special, 12
reference, 29
special, 12

AttributeError
exception, 30

B
back-quotes, 17, 29
backslash character, 4
backward

quotes, 17, 29
binary

arithmetic operation, 32
bit-wise operation, 33

binding
global name, 42
name, 23, 28, 38, 42, 48, 49

bit-wise
and, 33
operation, binary, 33
operation, unary, 32
or, 34
xor, 33

blank line, 4
block

code, 23
BNF, 1, 27
Boolean

operation, 35
break

statement, 41, 46, 48
bsddb (standard module), 13
built-in

method, 14
module, 42
name, 28

built-in function
call, 32
object, 14, 32

built-in method
call, 32
object, 14, 32

byte, 13
bytecode, 15

C
C, 7

language, 12, 14, 15, 34
call, 31

built-in function, 32
built-in method, 32
class instance, 32

class object, 14, 15, 32
function, 13, 32
instance, 18, 32
method, 32
procedure, 37
user-defined function, 32

callable
object, 13, 31

chaining
comparisons, 34

character, 13, 30
character set, 13
chr() (built-in function), 13
class

attribute, 15
attribute assignment, 15
constructor, 17
definition, 40, 49
instance, 15
name, 49
object, 14, 15, 32, 49

class instance
attribute, 15
attribute assignment, 15
call, 32
object, 14, 15, 32

class object
call, 14, 15, 32

clause, 45
clear , 18
cmp() (built-in function), 17
co argcount , 16
co code , 16
co consts , 16
co filename , 16
co firstlineno , 16
co flags , 16
co lnotab , 16
co name , 16
co names , 16
co nlocals , 16
co stacksize , 16
co varnames , 16
code

block, 23
object, 15

code block, 23, 28, 42
comma, 28

trailing, 36, 40
command line, 51
comment, 3
comparison, 34

string, 13
comparisons, 17

chaining, 34
compile() (built-in function), 43
complex

number, 12

54 Index

object, 12
complex literal, 8
compound

statement, 45
constant, 6
constructor

class, 17
container, 11, 15
continue

statement, 41, 46, 48
conversion

arithmetic, 27
string, 17, 29, 37

copy , 18
count , 18

D
dangling

else, 45
data, 11

type, 12
type, immutable, 28

datum, 29
dbm (standard module), 13
debugging

assertions, 37
decimal literal, 8
DEDENT token, 5, 45
default

parameter value, 48
definition

class, 40, 49
function, 40, 48

del
statement, 13, 17, 40

delete, 13
deletion

attribute, 40
target, 40
target list, 40

delimiters, 9
destructor, 17, 39
dictionary

display, 29
object, 13, 15, 18, 29, 30, 39

display
dictionary, 29
list, 28
tuple, 28

division, 33

E
EBCDIC, 13
elif

keyword, 46
Ellipsis , 12
Ellipsis

object, 12

else
dangling, 45

else
keyword, 41, 46, 47

empty
list, 28
tuple, 13, 28

error handling, 24
errors, 24
escape sequence, 7
eval() (built-in function), 43, 52
exc info , 16
exc traceback , 16, 47
exc type , 47
exc value , 47
except

keyword, 47
exception, 24, 41

AssertionError, 38
AttributeError, 30
handler, 16
ImportError, 42
NameError, 28
raising, 41
RuntimeError, 40
SyntaxError, 42
TypeError, 32
ValueError, 33
ZeroDivisionError, 33

exception handler, 24
exclusive

or, 33
exec

statement, 24, 43
execfile() (built-in function), 43
execution

frame, 23, 49
restricted, 24
stack, 16

execution model, 23
expression, 27

lambda, 35
list, 35, 37, 38
statement, 37

extended
slicing, 30

extension
filename, 42
module, 12

F
f back , 16
f builtins , 16
f code , 16
f exc traceback , 16
f exc type , 16
f exc value , 16
f globals , 16

Index 55

f lasti , 16
f lineno , 16
f locals , 16
f restricted , 16
f trace , 16
file

object, 15, 52
filename

extension, 42
finally

keyword, 40, 41, 48
floating point

number, 12
object, 12

floating point literal, 8
for

statement, 41, 46
form

lambda, 35, 48
frame

execution, 23, 49
object, 16

from
keyword, 42
statement, 24

from ... import * , 42
func code , 14
func defaults , 14
func doc , 14
func globals , 14
function

anonmymous, 35
argument, 13
call, 13, 32
call, user-defined, 32
definition, 40, 48
name, 48
object, 13, 14, 32, 48
user-defined, 13

G
garbage collection, 11
gdbm (standard module), 13
generic

special attribute, 12
get , 18
global

name, 28
name binding, 42
namespace, 14, 23

global
statement, 23, 24, 28, 38, 40, 42

globals() (built-in function), 43
grammar, 1
grouping, 4

H
handle an exception, 24

handler
exception, 16

has key , 18
hash character, 3
hash() (built-in function), 17
hexadecimal literal, 8
hierarchical

module names, 42
hierarchy

type, 12

I
identifier, 5, 27
identity

test, 34
identity of an object, 11
if

statement, 45
im func , 14
im self , 14
imaginary literal, 8
immutable

data type, 28
object, 13
objects, 28, 29

immutable object, 11
immutable sequence

object, 13
import

statement, 14, 41
ImportError

exception, 42
importing

module, 42
in

keyword, 46
operator, 34

inclusive
or, 34

INDENT token, 5
indentation, 4
index , 18
index operation, 12
inheritance, 49
initialization

module, 42
input, 52

raw, 52
input() (built-in function), 52
insert , 18
instance

call, 18, 32
class, 15
object, 14, 15, 32

integer
object, 12
representation, 12

integer literal, 8

56 Index

interactive mode, 51
internal type, 15
interpreter, 51
inversion, 32
invocation, 13
is

operator, 34
is not

operator, 34
item

sequence, 30
string, 30

item selection, 12
items , 18

K
key, 29
key/datum pair, 29
keys , 18
keyword, 6

elif, 46
else, 41, 46, 47
except, 47
finally, 40, 41, 48
from, 42
in, 46

L
lambda

expression, 35
form, 35, 48

language
C, 12, 14, 15, 34
Pascal, 46

last traceback , 16
leading whitespace, 4
len() (built-in function), 12, 13
lexical analysis, 3
lexical definitions, 2
line continuation, 4
line joining, 3, 4
line structure, 3
list

assignment, target, 38
deletion target, 40
display, 28
empty, 28
expression, 35, 37, 38
object, 13, 28, 30, 39
target, 38, 46

literal, 6, 28
local

namespace, 23
locals() (built-in function), 43
logical line, 3
long integer

object, 12
long integer literal, 8

loop
over mutable sequence, 47
statement, 41, 46

loop control
target, 41

M
makefile() (built-in function), 15
mangling

name, 28
mapping

object, 13, 15, 30, 39
membership

test, 34
method

built-in, 14
call, 32
object, 14, 32
user-defined, 14

minus, 32
module

built-in, 42
extension, 12
importing, 42
initialization, 42
name, 42
names, hierarchical, 42
namespace, 15
object, 14, 30
search path, 42
user-defined, 42

modules , 42
modulo, 33
multiplication, 33
mutable

object, 13, 38, 39
mutable object, 11
mutable sequece

object, 13
mutable sequence

loop over, 47

N
name, 5, 27

binding, 23, 28, 38, 42, 48, 49
binding, global, 42
built-in, 28
class, 49
function, 48
global, 28
mangling, 28
module, 42
rebinding, 23, 38
unbinding, 23, 40

NameError
exception, 28

NameError (built-in exception), 24
names

Index 57

hierarchical module, 42
private, 28

namespace, 23
global, 14, 23
local, 23
module, 15

negation, 32
newline

suppression, 40
NEWLINE token, 3, 45
None , 12, 37
None

object, 12
not

operator, 35
not in

operator, 34
notation, 1
null

operation, 39
number, 8

complex, 12
floating point, 12
object, 12, 15

numeric
object, 12

numeric literal, 8

O
object, 11

built-in function, 14, 32
built-in method, 14, 32
callable, 13, 31
class, 14, 15, 32, 49
class instance, 14, 15, 32
code, 15
complex, 12
dictionary, 13, 15, 18, 29, 30, 39
Ellipsis, 12
file, 15, 52
floating point, 12
frame, 16
function, 13, 14, 32, 48
immutable, 13
immutable sequence, 13
instance, 14, 15, 32
integer, 12
list, 13, 28, 30, 39
long integer, 12
mapping, 13, 15, 30, 39
method, 14, 32
module, 14, 30
mutable, 13, 38, 39
mutable sequece, 13
None, 12
number, 12, 15
numeric, 12
plain integer, 12

recursive, 29
seqence, 12
sequence, 15, 30, 34, 39, 46
string, 13, 30
traceback, 16, 41, 47
tuple, 13, 30, 35
user-defined function, 13, 32, 48
user-defined method, 14

objects
immutable, 28, 29

octal literal, 8
open() (built-in function), 15
operation

binary arithmetic, 32
binary bit-wise, 33
Boolean, 35
null, 39
shifting, 33
unary arithmetic, 32
unary bit-wise, 32

operator
and, 35
in, 34
is, 34
is not, 34
not, 35
not in, 34
or, 35

operators, 9
or

bit-wise, 34
exclusive, 33
inclusive, 34

or
operator, 35

ord() (built-in function), 13
output, 37, 40

standard, 37, 40
OverflowError (built-in exception), 12

P
packages, 42
parameter

value, default, 48
parenthesized form, 28
parser, 3
Pascal

language, 46
pass

statement, 39
path

module search, 42
physical line, 3, 4, 7
plain integer

object, 12
plain integer literal, 8
plus, 32
pop , 18

58 Index

popen() (built-in function), 15
primary, 29
print

statement, 17, 40
private

names, 28
procedure

call, 37
program, 51

Q
quotes

backward, 17, 29
reverse, 17, 29

R
raise

statement, 41
raise an exception, 24
raising

exception, 41
range() (built-in function), 46
raw input, 52
raw string, 7
raw input() (built-in function), 52
readline() (file method), 52
rebinding

name, 23, 38
recursive

object, 29
reference

attribute, 29
reference counting, 11
remove , 18
repr() (built-in function), 17, 29, 37
representation

integer, 12
reserved word, 6
restricted

execution, 24
return

statement, 40, 48
reverse

quotes, 17, 29
reverse , 18
RuntimeError

exception, 40

S
search

path, module, 42
seqence

object, 12
sequence

item, 30
object, 15, 30, 34, 39, 46

shifting
operation, 33

simple
statement, 37

singleton
tuple, 13

slice, 30
slicing, 13, 30

assignment, 39
extended, 30

sort , 18
space, 4
special

attribute, 12
attribute, generic, 12

stack
execution, 16
trace, 16

standard
output, 37, 40

Standard C, 7
standard input, 51
statement

assert, 37
assignment, 13, 38
break, 41, 46, 48
compound, 45
continue, 41, 46, 48
del, 13, 17, 40
exec, 24, 43
expression, 37
for, 41, 46
from, 24
global, 23, 24, 28, 38, 40, 42
if, 45
import, 14, 41
loop, 41, 46
pass, 39
print, 17, 40
raise, 41
return, 40, 48
simple, 37
try, 16, 47
while, 41, 46

statement grouping, 4
stderr , 15
stdin , 15
stdio, 15
stdout , 15, 40
str() (built-in function), 17, 29
string

comparison, 13
conversion, 17, 29, 37
item, 30
object, 13, 30

string literal, 6
subscription, 12, 13, 30

assignment, 39
subtraction, 33
suite, 45

Index 59

suppression
newline, 40

syntax, 1, 27
SyntaxError

exception, 42
sys (built-in module), 40, 42, 47, 51
sys.exc info , 16
sys.exc traceback , 16
sys.last traceback , 16
sys.modules , 42
sys.stderr , 15
sys.stdin , 15
sys.stdout , 15
SystemExit , 25

T
tab, 4
target, 38

deletion, 40
list, 38, 46
list assignment, 38
list, deletion, 40
loop control, 41

tb frame , 16
tb lasti , 16
tb lineno , 16
tb next , 16
test

identity, 34
membership, 34

token, 3
trace

stack, 16
traceback

object, 16, 41, 47
trailing

comma, 36, 40
triple-quoted string, 7
try

statement, 16, 47
tuple

display, 28
empty, 13, 28
object, 13, 30, 35
singleton, 13

type, 12
data, 12
hierarchy, 12
immutable data, 28

type of an object, 11
TypeError

exception, 32
types, internal, 15

U
unary

arithmetic operation, 32
bit-wise operation, 32

unbinding
name, 23, 40

UNIX, 51
unreachable object, 11
unrecognized escape sequence, 7
update , 18
user-defined

function, 13
function call, 32
method, 14
module, 42

user-defined function
object, 13, 32, 48

user-defined method
object, 14

V
value

default parameter, 48
value of an object, 11
ValueError

exception, 33
values

writing, 37, 40
values , 18

W
while

statement, 41, 46
whitespace, 4
writing

values, 37, 40

X
xor

bit-wise, 33

Z
ZeroDivisionError

exception, 33

60 Index

	1 Introduction
	1.1 Notation

	2 Lexical analysis
	2.1 Line structure
	Logical lines
	Physical lines
	Comments
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	Keywords
	Reserved classes of identifiers

	2.4 Literals
	String literals
	String literal concatenation
	Numeric literals
	Integer and long integer literals
	Floating point literals
	Imaginary literals

	2.5 Operators
	2.6 Delimiters

	3 Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	Basic customization
	Customizing attribute access
	Emulating callable objects
	Emulating sequence and mapping types
	Additional methods for emulation of sequence types
	Emulating numeric types

	4 Execution model
	4.1 Code blocks, execution frames, and namespaces
	4.2 Exceptions

	5 Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	List displays
	Dictionary displays
	String conversions

	5.3 Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Expression lists
	5.12 Summary

	6 Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The raise statement
	6.9 The break statement
	6.10 The continue statement
	6.11 The import statement
	6.12 The global statement
	6.13 The exec statement

	7 Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	8 Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input

	Index

