
What’s New in Python 2.2
Release 1.00

A.M. Kuchling

April 9, 2002

akuchlin@mems-exchange.org

Contents

1 Introduction 1

2 PEPs 252 and 253: Type and Class Changes 2
2.1 Old and New Classes. 3
2.2 Descriptors . 3
2.3 Multiple Inheritance: The Diamond Rule. 5
2.4 Attribute Access. 5
2.5 Related Links. 7

3 PEP 234: Iterators 7

4 PEP 255: Simple Generators 9

5 PEP 237: Unifying Long Integers and Integers 10

6 PEP 238: Changing the Division Operator 11

7 Unicode Changes 12

8 PEP 227: Nested Scopes 13

9 New and Improved Modules 14

10 Interpreter Changes and Fixes 16

11 Other Changes and Fixes 16

12 Acknowledgements 18

1 Introduction

This article explains the new features in Python 2.2, released on December 21, 2001.

Python 2.2 can be thought of as the ”cleanup release”. There are some features such as generators and iterators that
are completely new, but most of the changes, significant and far-reaching though they may be, are aimed at cleaning
up irregularities and dark corners of the language design.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.2, such as thePython Library Reference
and thePython Reference Manual. If you want to understand the complete implementation and design rationale for a
change, refer to the PEP for a particular new feature.

See Also:

http://www.unixreview.com/documents/s=1356/urm0109h/0109h.htm
“What’s So Special About Python 2.2?” is also about the new 2.2 features, and was written by Cameron Laird
and Kathryn Soraiz.

2 PEPs 252 and 253: Type and Class Changes

The largest and most far-reaching changes in Python 2.2 are to Python’s model of objects and classes. The changes
should be backward compatible, so it’s likely that your code will continue to run unchanged, but the changes provide
some amazing new capabilities. Before beginning this, the longest and most complicated section of this article, I’ll
provide an overview of the changes and offer some comments.

A long time ago I wrote a Web page (http://www.amk.ca/python/writing/warts.html) listing flaws in Python’s design.
One of the most significant flaws was that it’s impossible to subclass Python types implemented in C. In particular,
it’s not possible to subclass built-in types, so you can’t just subclass, say, lists in order to add a single useful method
to them. TheUserList module provides a class that supports all of the methods of lists and that can be subclassed
further, but there’s lots of C code that expects a regular Python list and won’t accept aUserList instance.

Python 2.2 fixes this, and in the process adds some exciting new capabilities. A brief summary:

• You can subclass built-in types such as lists and even integers, and your subclasses should work in every place
that requires the original type.

• It’s now possible to define static and class methods, in addition to the instance methods available in previous
versions of Python.

• It’s also possible to automatically call methods on accessing or setting an instance attribute by using a new
mechanism calledproperties. Many uses of getattr can be rewritten to use properties instead, making
the resulting code simpler and faster. As a small side benefit, attributes can now have docstrings, too.

• The list of legal attributes for an instance can be limited to a particular set usingslots, making it possible to
safeguard against typos and perhaps make more optimizations possible in future versions of Python.

Some users have voiced concern about all these changes. Sure, they say, the new features are neat and lend themselves
to all sorts of tricks that weren’t possible in previous versions of Python, but they also make the language more
complicated. Some people have said that they’ve always recommended Python for its simplicity, and feel that its
simplicity is being lost.

Personally, I think there’s no need to worry. Many of the new features are quite esoteric, and you can write a lot of
Python code without ever needed to be aware of them. Writing a simple class is no more difficult than it ever was, so
you don’t need to bother learning or teaching them unless they’re actually needed. Some very complicated tasks that
were previously only possible from C will now be possible in pure Python, and to my mind that’s all for the better.

I’m not going to attempt to cover every single corner case and small change that were required to make the new
features work. Instead this section will paint only the broad strokes. See section 2.5, “Related Links”, for further
sources of information about Python 2.2’s new object model.

2 2 PEPs 252 and 253: Type and Class Changes

2.1 Old and New Classes

First, you should know that Python 2.2 really has two kinds of classes: classic or old-style classes, and new-style
classes. The old-style class model is exactly the same as the class model in earlier versions of Python. All the
new features described in this section apply only to new-style classes. This divergence isn’t intended to last forever;
eventually old-style classes will be dropped, possibly in Python 3.0.

So how do you define a new-style class? You do it by subclassing an existing new-style class. Most of Python’s
built-in types, such as integers, lists, dictionaries, and even files, are new-style classes now. A new-style class named
object , the base class for all built-in types, has been also been added so if no built-in type is suitable, you can just
subclassobject :

class C(object):
def __init__ (self):

...
...

This means thatclass statements that don’t have any base classes are always classic classes in Python 2.2. (Actually
you can also change this by setting a module-level variable namedmetaclass — see PEP 253 for the details
— but it’s easier to just subclassobject .)

The type objects for the built-in types are available as built-ins, named using a clever trick. Python has always had
built-in functions namedint() , float() , andstr() . In 2.2, they aren’t functions any more, but type objects that
behave as factories when called.

>>> int
<type ’int’>
>>> int(’123’)
123

To make the set of types complete, new type objects such asdict and file have been added. Here’s a more
interesting example, adding alock() method to file objects:

class LockableFile(file):
def lock (self, operation, length=0, start=0, whence=0):

import fcntl
return fcntl.lockf(self.fileno(), operation,

length, start, whence)

The now-obsoleteposixfile module contained a class that emulated all of a file object’s methods and also added a
lock() method, but this class couldn’t be passed to internal functions that expected a built-in file, something which
is possible with our newLockableFile .

2.2 Descriptors

In previous versions of Python, there was no consistent way to discover what attributes and methods were supported
by an object. There were some informal conventions, such as definingmembers and methods attributes
that were lists of names, but often the author of an extension type or a class wouldn’t bother to define them. You could
fall back on inspecting the dict of an object, but when class inheritance or an arbitrarygetattr hook
were in use this could still be inaccurate.

The one big idea underlying the new class model is that an API for describing the attributes of an object usingdescrip-
tors has been formalized. Descriptors specify the value of an attribute, stating whether it’s a method or a field. With
the descriptor API, static methods and class methods become possible, as well as more exotic constructs.

Attribute descriptors are objects that live inside class objects, and have a few attributes of their own:

2.1 Old and New Classes 3

• name is the attribute’s name.

• doc is the attribute’s docstring.

• get (object) is a method that retrieves the attribute value fromobject.

• set (object, value) sets the attribute onobjectto value.

• delete (object, value) deletes thevalueattribute ofobject.

For example, when you writeobj.x , the steps that Python actually performs are:

descriptor = obj.__class__.x
descriptor.__get__(obj)

For methods,descriptor. get returns a temporary object that’s callable, and wraps up the instance and the
method to be called on it. This is also why static methods and class methods are now possible; they have descriptors
that wrap up just the method, or the method and the class. As a brief explanation of these new kinds of methods, static
methods aren’t passed the instance, and therefore resemble regular functions. Class methods are passed the class of
the object, but not the object itself. Static and class methods are defined like this:

class C(object):
def f(arg1, arg2):

...
f = staticmethod(f)

def g(cls, arg1, arg2):
...

g = classmethod(g)

Thestaticmethod() function takes the functionf , and returns it wrapped up in a descriptor so it can be stored
in the class object. You might expect there to be special syntax for creating such methods (def static f() ,
defstatic f() , or something like that) but no such syntax has been defined yet; that’s been left for future versions
of Python.

More new features, such as slots and properties, are also implemented as new kinds of descriptors, and it’s not difficult
to write a descriptor class that does something novel. For example, it would be possible to write a descriptor class
that made it possible to write Eiffel-style preconditions and postconditions for a method. A class that used this feature
might be defined like this:

from eiffel import eiffelmethod

class C(object):
def f(self, arg1, arg2):

The actual function
...

def pre_f(self):
Check preconditions
...

def post_f(self):
Check postconditions
...

f = eiffelmethod(f, pre_f, post_f)

Note that a person using the neweiffelmethod() doesn’t have to understand anything about descriptors. This is
why I think the new features don’t increase the basic complexity of the language. There will be a few wizards who
need to know about it in order to writeeiffelmethod() or the ZODB or whatever, but most users will just write
code on top of the resulting libraries and ignore the implementation details.

4 2 PEPs 252 and 253: Type and Class Changes

2.3 Multiple Inheritance: The Diamond Rule

Multiple inheritance has also been made more useful through changing the rules under which names are resolved.
Consider this set of classes (diagram taken from PEP 253 by Guido van Rossum):

class A:
ˆ ˆ def save(self): ...

/ \
/ \

/ \
/ \

class B class C:
ˆ ˆ def save(self): ...

\ /
\ /

\ /
\ /

class D

The lookup rule for classic classes is simple but not very smart; the base classes are searched depth-first, going from
left to right. A reference toD.save will search the classesD, B, and thenA, wheresave() would be found and
returned.C.save() would never be found at all. This is bad, because ifC’s save() method is saving some internal
state specific toC, not calling it will result in that state never getting saved.

New-style classes follow a different algorithm that’s a bit more complicated to explain, but does the right thing in this
situation.

1. List all the base classes, following the classic lookup rule and include a class multiple times if it’s visited
repeatedly. In the above example, the list of visited classes is [D, B, A, C, A].

2. Scan the list for duplicated classes. If any are found, remove all but one occurrence, leaving thelast one in the
list. In the above example, the list becomes [D, B, C, A] after dropping duplicates.

Following this rule, referring toD.save() will return C.save() , which is the behaviour we’re after. This lookup
rule is the same as the one followed by Common Lisp. A new built-in function,super() , provides a way to get
at a class’s superclasses without having to reimplement Python’s algorithm. The most commonly used form will be
super(class, obj) , which returns a bound superclass object (not the actual class object). This form will be used in
methods to call a method in the superclass; for example,D’s save() method would look like this:

class D:
def save (self):

Call superclass .save()
super(D, self).save()
Save D’s private information here
...

super() can also return unbound superclass objects when called assuper(class) or super(class1, class2) ,
but this probably won’t often be useful.

2.4 Attribute Access

A fair number of sophisticated Python classes define hooks for attribute access usinggetattr ; most com-
monly this is done for convenience, to make code more readable by automatically mapping an attribute access such
asobj.parent into a method call such asobj.get parent() . Python 2.2 adds some new ways of controlling
attribute access.

2.3 Multiple Inheritance: The Diamond Rule 5

First, getattr (attr name) is still supported by new-style classes, and nothing about it has changed. As
before, it will be called when an attempt is made to accessobj.foo and no attribute named ‘foo ’ is found in the
instance’s dictionary.

New-style classes also support a new method,getattribute (attr name) . The difference between the
two methods is that getattribute is always called whenever any attribute is accessed, while the old

getattr is only called if ‘foo ’ isn’t found in the instance’s dictionary.

However, Python 2.2’s support forpropertieswill often be a simpler way to trap attribute references. Writing a
getattr method is complicated because to avoid recursion you can’t use regular attribute accesses inside

them, and instead have to mess around with the contents ofdict . getattr methods also end up being
called by Python when it checks for other methods such asrepr or coerce , and so have to be written
with this in mind. Finally, calling a function on every attribute access results in a sizable performance loss.

property is a new built-in type that packages up three functions that get, set, or delete an attribute, and a docstring.
For example, if you want to define asize attribute that’s computed, but also settable, you could write:

class C(object):
def get_size (self):

result = ... computation ...
return result

def set_size (self, size):
... compute something based on the size
and set internal state appropriately ...

Define a property. The ’delete this attribute’
method is defined as None, so the attribute
can’t be deleted.
size = property(get_size, set_size,

None,
"Storage size of this instance")

That is certainly clearer and easier to write than a pair ofgetattr / setattr methods that check for the
size attribute and handle it specially while retrieving all other attributes from the instance’sdict . Accesses
to size are also the only ones which have to perform the work of calling a function, so references to other attributes
run at their usual speed.

Finally, it’s possible to constrain the list of attributes that can be referenced on an object using the newslots
class attribute. Python objects are usually very dynamic; at any time it’s possible to define a new attribute on an
instance by just doingobj.new attr=1 . This is flexible and convenient, but this flexibility can also lead to bugs,
as when you meant to writeobj.template = ’a’ but made a typo and wroteobj.templtae by accident.

A new-style class can define a class attribute namedslots to constrain the list of legal attribute names. An
example will make this clear:

>>> class C(object):
... __slots__ = (’template’, ’name’)
...
>>> obj = C()
>>> print obj.template
None
>>> obj.template = ’Test’
>>> print obj.template
Test
>>> obj.templtae = None
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’C’ object has no attribute ’templtae’

6 2 PEPs 252 and 253: Type and Class Changes

Note how you get anAttributeError on the attempt to assign to an attribute not listed inslots .

2.5 Related Links

This section has just been a quick overview of the new features, giving enough of an explanation to start you program-
ming, but many details have been simplified or ignored. Where should you go to get a more complete picture?

http://www.python.org/2.2/descrintro.html is a lengthy tutorial introduction to the descriptor features, written by Guido
van Rossum. If my description has whetted your appetite, go read this tutorial next, because it goes into much more
detail about the new features while still remaining quite easy to read.

Next, there are two relevant PEPs, PEP 252 and PEP 253. PEP 252 is titled ”Making Types Look More Like Classes”,
and covers the descriptor API. PEP 253 is titled ”Subtyping Built-in Types”, and describes the changes to type objects
that make it possible to subtype built-in objects. PEP 253 is the more complicated PEP of the two, and at a few points
the necessary explanations of types and meta-types may cause your head to explode. Both PEPs were written and
implemented by Guido van Rossum, with substantial assistance from the rest of the Zope Corp. team.

Finally, there’s the ultimate authority: the source code. Most of the machinery for the type handling is in
‘Objects/typeobject.c’, but you should only resort to it after all other avenues have been exhausted, including post-
ing a question to python-list or python-dev.

3 PEP 234: Iterators

Another significant addition to 2.2 is an iteration interface at both the C and Python levels. Objects can define how
they can be looped over by callers.

In Python versions up to 2.1, the usual way to makefor item in obj work is to define a getitem ()
method that looks something like this:

def __getitem__(self, index):
return <next item>

getitem () is more properly used to define an indexing operation on an object so that you can writeobj[5]
to retrieve the sixth element. It’s a bit misleading when you’re using this only to supportfor loops. Consider some
file-like object that wants to be looped over; theindexparameter is essentially meaningless, as the class probably
assumes that a series of getitem () calls will be made withindex incrementing by one each time. In other
words, the presence of the getitem () method doesn’t mean that usingfile[5] to randomly access the sixth
element will work, though it really should.

In Python 2.2, iteration can be implemented separately, andgetitem () methods can be limited to classes
that really do support random access. The basic idea of iterators is simple. A new built-in function,iter(obj) or
iter(C, sentinel) , is used to get an iterator.iter(obj) returns an iterator for the objectobj, while iter(C,
sentinel) returns an iterator that will invoke the callable objectC until it returnssentinelto signal that the iterator is
done.

Python classes can define aniter () method, which should create and return a new iterator for the object; if the
object is its own iterator, this method can just returnself . In particular, iterators will usually be their own iterators.
Extension types implemented in C can implement atp iter function in order to return an iterator, and extension
types that want to behave as iterators can define atp iternext function.

So, after all this, what do iterators actually do? They have one required method,next() , which takes no argu-
ments and returns the next value. When there are no more values to be returned, callingnext() should raise the
StopIteration exception.

2.5 Related Links 7

>>> L = [1,2,3]
>>> i = iter(L)
>>> print i
<iterator object at 0x8116870>
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
StopIteration
>>>

In 2.2, Python’sfor statement no longer expects a sequence; it expects something for whichiter() will return
an iterator. For backward compatibility and convenience, an iterator is automatically constructed for sequences that
don’t implement iter () or a tp iter slot, sofor i in [1,2,3] will still work. Wherever the Python
interpreter loops over a sequence, it’s been changed to use the iterator protocol. This means you can do things like
this:

>>> L = [1,2,3]
>>> i = iter(L)
>>> a,b,c = i
>>> a,b,c
(1, 2, 3)

Iterator support has been added to some of Python’s basic types. Callingiter() on a dictionary will return an iterator
which loops over its keys:

>>> m = {’Jan’: 1, ’Feb’: 2, ’Mar’: 3, ’Apr’: 4, ’May’: 5, ’Jun’: 6,
... ’Jul’: 7, ’Aug’: 8, ’Sep’: 9, ’Oct’: 10, ’Nov’: 11, ’Dec’: 12}
>>> for key in m: print key, m[key]
...
Mar 3
Feb 2
Aug 8
Sep 9
May 5
Jun 6
Jul 7
Jan 1
Apr 4
Nov 11
Dec 12
Oct 10

That’s just the default behaviour. If you want to iterate over keys, values, or key/value pairs, you can explicitly call
the iterkeys() , itervalues() , or iteritems() methods to get an appropriate iterator. In a minor related
change, thein operator now works on dictionaries, sokey in dict is now equivalent todict.has key(key) .

Files also provide an iterator, which calls thereadline() method until there are no more lines in the file. This
means you can now read each line of a file using code like this:

for line in file:
do something for each line

8 3 PEP 234: Iterators

...

Note that you can only go forward in an iterator; there’s no way to get the previous element, reset the iterator, or make
a copy of it. An iterator object could provide such additional capabilities, but the iterator protocol only requires a
next() method.

See Also:

PEP 234, “Iterators”
Written by Ka-Ping Yee and GvR; implemented by the Python Labs crew, mostly by GvR and Tim Peters.

4 PEP 255: Simple Generators

Generators are another new feature, one that interacts with the introduction of iterators.

You’re doubtless familiar with how function calls work in Python or C. When you call a function, it gets a private
namespace where its local variables are created. When the function reaches areturn statement, the local variables
are destroyed and the resulting value is returned to the caller. A later call to the same function will get a fresh new set
of local variables. But, what if the local variables weren’t thrown away on exiting a function? What if you could later
resume the function where it left off? This is what generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
for i in range(N):

yield i

A new keyword,yield , was introduced for generators. Any function containing ayield statement is a generator
function; this is detected by Python’s bytecode compiler which compiles the function specially as a result. Because a
new keyword was introduced, generators must be explicitly enabled in a module by including afrom future
import generators statement near the top of the module’s source code. In Python 2.3 this statement will become
unnecessary.

When you call a generator function, it doesn’t return a single value; instead it returns a generator object that supports
the iterator protocol. On executing theyield statement, the generator outputs the value ofi , similar to areturn
statement. The big difference betweenyield and areturn statement is that on reaching ayield the generator’s
state of execution is suspended and local variables are preserved. On the next call to the generator’s.next() method,
the function will resume executing immediately after theyield statement. (For complicated reasons, theyield
statement isn’t allowed inside thetry block of atry...finally statement; read PEP 255 for a full explanation
of the interaction betweenyield and exceptions.)

Here’s a sample usage of thegenerate ints generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 2, in generate_ints

9

StopIteration

You could equally writefor i in generate ints(5) , or a,b,c = generate ints(3) .

Inside a generator function, thereturn statement can only be used without a value, and signals the end of the
procession of values; afterwards the generator cannot return any further values.return with a value, such asreturn
5, is a syntax error inside a generator function. The end of the generator’s results can also be indicated by raising
StopIteration manually, or by just letting the flow of execution fall off the bottom of the function.

You could achieve the effect of generators manually by writing your own class and storing all the local variables of
the generator as instance variables. For example, returning a list of integers could be done by settingself.count
to 0, and having thenext() method incrementself.count and return it. However, for a moderately complicated
generator, writing a corresponding class would be much messier. ‘Lib/test/test generators.py’ contains a number of
more interesting examples. The simplest one implements an in-order traversal of a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):

if t:
for x in inorder(t.left):

yield x
yield t.label
for x in inorder(t.right):

yield x

Two other examples in ‘Lib/test/test generators.py’ produce solutions for the N-Queens problem (placingN queens
on anNxN chess board so that no queen threatens another) and the Knight’s Tour (a route that takes a knight to every
square of anNxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon (http://www.cs.arizona.edu/icon/),
where the idea of generators is central. In Icon, every expression and function call behaves like a generator. One
example from “An Overview of the Icon Programming Language” athttp://www.cs.arizona.edu/icon/docs/ipd266.htm
gives an idea of what this looks like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon thefind() function returns the indexes at which the substring “or” is found: 3, 23, 33. In theif statement,
i is first assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon retries it with the second value of
23. 23 is greater than 5, so the comparison now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central concept. Generators are considered a new
part of the core Python language, but learning or using them isn’t compulsory; if they don’t solve any problems that
you have, feel free to ignore them. One novel feature of Python’s interface as compared to Icon’s is that a generator’s
state is represented as a concrete object (the iterator) that can be passed around to other functions or stored in a data
structure.

See Also:

PEP 255, “Simple Generators”
Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly by Neil Schemenauer and
Tim Peters, with other fixes from the Python Labs crew.

5 PEP 237: Unifying Long Integers and Integers

In recent versions, the distinction between regular integers, which are 32-bit values on most machines, and long
integers, which can be of arbitrary size, was becoming an annoyance. For example, on platforms that support files

10 5 PEP 237: Unifying Long Integers and Integers

larger than2**32 bytes, thetell() method of file objects has to return a long integer. However, there were various
bits of Python that expected plain integers and would raise an error if a long integer was provided instead. For example,
in Python 1.5, only regular integers could be used as a slice index, and’abc’[1L:] would raise aTypeError
exception with the message ’slice index must be int’.

Python 2.2 will shift values from short to long integers as required. The ’L’ suffix is no longer needed to indicate a
long integer literal, as now the compiler will choose the appropriate type. (Using the ’L’ suffix will be discouraged
in future 2.x versions of Python, triggering a warning in Python 2.4, and probably dropped in Python 3.0.) Many
operations that used to raise anOverflowError will now return a long integer as their result. For example:

>>> 1234567890123
1234567890123L
>>> 2 ** 64
18446744073709551616L

In most cases, integers and long integers will now be treated identically. You can still distinguish them with the
type() built-in function, but that’s rarely needed.

See Also:

PEP 237, “Unifying Long Integers and Integers”
Written by Moshe Zadka and Guido van Rossum. Implemented mostly by Guido van Rossum.

6 PEP 238: Changing the Division Operator

The most controversial change in Python 2.2 heralds the start of an effort to fix an old design flaw that’s been in Python
from the beginning. Currently Python’s division operator,/ , behaves like C’s division operator when presented with
two integer arguments: it returns an integer result that’s truncated down when there would be a fractional part. For
example,3/2 is 1, not 1.5, and(-1)/2 is -1, not -0.5. This means that the results of divison can vary unexpectedly
depending on the type of the two operands and because Python is dynamically typed, it can be difficult to determine
the possible types of the operands.

(The controversy is over whether this isreally a design flaw, and whether it’s worth breaking existing code to fix this.
It’s caused endless discussions on python-dev, and in July 2001 erupted into an storm of acidly sarcastic postings on
comp.lang.python. I won’t argue for either side here and will stick to describing what’s implemented in 2.2. Read PEP
238 for a summary of arguments and counter-arguments.)

Because this change might break code, it’s being introduced very gradually. Python 2.2 begins the transition, but the
switch won’t be complete until Python 3.0.

First, I’ll borrow some terminology from PEP 238. “True division” is the division that most non-programmers are
familiar with: 3/2 is 1.5, 1/4 is 0.25, and so forth. “Floor division” is what Python’s/ operator currently does when
given integer operands; the result is the floor of the value returned by true division. “Classic division” is the current
mixed behaviour of/ ; it returns the result of floor division when the operands are integers, and returns the result of
true division when one of the operands is a floating-point number.

Here are the changes 2.2 introduces:

• A new operator,// , is the floor division operator. (Yes, we know it looks like C++’s comment symbol.)//
alwaysperforms floor division no matter what the types of its operands are, so1 // 2 is 0 and1.0 // 2.0
is also 0.0.

// is always available in Python 2.2; you don’t need to enable it using afuture statement.

• By including afrom future import division in a module, the/ operator will be changed to
return the result of true division, so1/2 is 0.5. Without the future statement,/ still means classic
division. The default meaning of/ will not change until Python 3.0.

11

• Classes can define methods calledtruediv and floordiv to overload the two division opera-
tors. At the C level, there are also slots in thePyNumberMethods structure so extension types can define the
two operators.

• Python 2.2 supports some command-line arguments for testing whether code will works with the changed divi-
sion semantics. Running python with-Q warn will cause a warning to be issued whenever division is applied
to two integers. You can use this to find code that’s affected by the change and fix it. By default, Python 2.2 will
simply perform classic division without a warning; the warning will be turned on by default in Python 2.3.

See Also:

PEP 238, “Changing the Division Operator”
Written by Moshe Zadka and Guido van Rossum. Implemented by Guido van Rossum..

7 Unicode Changes

Python’s Unicode support has been enhanced a bit in 2.2. Unicode strings are usually stored as UCS-2, as 16-bit
unsigned integers. Python 2.2 can also be compiled to use UCS-4, 32-bit unsigned integers, as its internal encod-
ing by supplying--enable-unicode=ucs4to the configure script. (It’s also possible to specify--disable-unicodeto
completely disable Unicode support.)

When built to use UCS-4 (a “wide Python”), the interpreter can natively handle Unicode characters from U+000000
to U+110000, so the range of legal values for theunichr() function is expanded accordingly. Using an interpreter
compiled to use UCS-2 (a “narrow Python”), values greater than 65535 will still causeunichr() to raise aVal-
ueError exception. This is all described in PEP 261, “Support for ‘wide’ Unicode characters”; consult it for further
details.

Another change is simpler to explain. Since their introduction, Unicode strings have supported anencode() method
to convert the string to a selected encoding such as UTF-8 or Latin-1. A symmetricdecode([encoding]) method
has been added to 8-bit strings (though not to Unicode strings) in 2.2.decode() assumes that the string is in the
specified encoding and decodes it, returning whatever is returned by the codec.

Using this new feature, codecs have been added for tasks not directly related to Unicode. For example, codecs have
been added for uu-encoding, MIME’s base64 encoding, and compression with thezlib module:

>>> s = """Here is a lengthy piece of redundant, overly verbose,
... and repetitive text.
... """
>>> data = s.encode(’zlib’)
>>> data
’x\x9c\r\xc9\xc1\r\x80 \x10\x04\xc0?Ul...’
>>> data.decode(’zlib’)
’Here is a lengthy piece of redundant, overly verbose,\nand repetitive text.\n’
>>> print s.encode(’uu’)
begin 666 <data>
M2&5R92!I<R!A(&QE;F=T:’D@<&EE8V4@;V8@<F5D=6YD86YT+"!O=F5R;’D@
>=F5R8F]S92P*86YD(’)E<&5T:71I=F4@=&5X="X*

end
>>> "sheesh".encode(’rot-13’)
’furrfu’

To convert a class instance to Unicode, aunicode method can be defined by a class, analogous tostr .

encode() , decode() , and unicode were implemented by Marc-André Lemburg. The changes to support
using UCS-4 internally were implemented by Fredrik Lundh and Martin von Löwis.

12 7 Unicode Changes

See Also:

PEP 261, “Support for ‘wide’ Unicode characters”
Written by Paul Prescod.

8 PEP 227: Nested Scopes

In Python 2.1, statically nested scopes were added as an optional feature, to be enabled by afrom future
import nested scopes directive. In 2.2 nested scopes no longer need to be specially enabled, and are now
always present. The rest of this section is a copy of the description of nested scopes from my “What’s New in Python
2.1” document; if you read it when 2.1 came out, you can skip the rest of this section.

The largest change introduced in Python 2.1, and made complete in 2.2, is to Python’s scoping rules. In Python 2.0,
at any given time there are at most three namespaces used to look up variable names: local, module-level, and the
built-in namespace. This often surprised people because it didn’t match their intuitive expectations. For example, a
nested recursive function definition doesn’t work:

def f():
...
def g(value):

...
return g(value-1) + 1

...

The functiong() will always raise aNameError exception, because the binding of the name ‘g’ isn’t in either
its local namespace or in the module-level namespace. This isn’t much of a problem in practice (how often do you
recursively define interior functions like this?), but this also made using thelambda statement clumsier, and this was
a problem in practice. In code which useslambda you can often find local variables being copied by passing them as
the default values of arguments.

def find(self, name):
"Return list of any entries equal to ’name’"
L = filter(lambda x, name=name: x == name,

self.list_attribute)
return L

The readability of Python code written in a strongly functional style suffers greatly as a result.

The most significant change to Python 2.2 is that static scoping has been added to the language to fix this problem.
As a first effect, thename=name default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment, or thedef , class , or import
statements), references to the variable will be looked up in the local namespace of the enclosing scope. A more
detailed explanation of the rules, and a dissection of the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same variable name is used both at the module
level and as a local variable within a function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first place.

One side effect of the change is that thefrom module import * andexec statements have been made illegal
inside a function scope under certain conditions. The Python reference manual has said all along thatfrom module
import * is only legal at the top level of a module, but the CPython interpreter has never enforced this before. As
part of the implementation of nested scopes, the compiler which turns Python source into bytecodes has to generate
different code to access variables in a containing scope.from module import * andexec make it impossible
for the compiler to figure this out, because they add names to the local namespace that are unknowable at compile
time. Therefore, if a function contains function definitions orlambda expressions with free variables, the compiler
will flag this by raising aSyntaxError exception.

13

To make the preceding explanation a bit clearer, here’s an example:

x = 1
def f():

The next line is a syntax error
exec ’x=2’
def g():

return x

Line 4 containing theexec statement is a syntax error, sinceexec would define a new local variable named ‘x ’
whose value should be accessed byg() .

This shouldn’t be much of a limitation, sinceexec is rarely used in most Python code (and when it is used, it’s often
a sign of a poor design anyway).

See Also:

PEP 227, “Statically Nested Scopes”
Written and implemented by Jeremy Hylton.

9 New and Improved Modules

• Thexmlrpclib module was contributed to the standard library by Fredrik Lundh, provding support for writing
XML-RPC clients. XML-RPC is a simple remote procedure call protocol built on top of HTTP and XML. For
example, the following snippet retrieves a list of RSS channels from the O’Reilly Network, and then lists the
recent headlines for one channel:

import xmlrpclib
s = xmlrpclib.Server(

’http://www.oreillynet.com/meerkat/xml-rpc/server.php’)
channels = s.meerkat.getChannels()
channels is a list of dictionaries, like this:
[{’id’: 4, ’title’: ’Freshmeat Daily News’}
{’id’: 190, ’title’: ’32Bits Online’},
{’id’: 4549, ’title’: ’3DGamers’}, ...]

Get the items for one channel
items = s.meerkat.getItems({’channel’: 4})

’items’ is another list of dictionaries, like this:
[{’link’: ’http://freshmeat.net/releases/52719/’,
’description’: ’A utility which converts HTML to XSL FO.’,
’title’: ’html2fo 0.3 (Default)’}, ...]

The SimpleXMLRPCServer module makes it easy to create straightforward XML-RPC servers. See
http://www.xmlrpc.com/ for more information about XML-RPC.

• The newhmac module implements the HMAC algorithm described by RFC 2104. (Contributed by Gerhard
Häring.)

• Several functions that originally returned lengthy tuples now return pseudo-sequences that still behave like tuples
but also have mnemonic attributes such as memberstmtime or tm year . The enhanced functions include
stat() , fstat() , statvfs() , andfstatvfs() in theos module, andlocaltime() , gmtime() ,
andstrptime() in thetime module.

For example, to obtain a file’s size using the old tuples, you’d end up writing something likefile size
= os.stat(filename)[stat.ST SIZE] , but now this can be written more clearly asfile size =
os.stat(filename).st size .

14 9 New and Improved Modules

The original patch for this feature was contributed by Nick Mathewson.

• The Python profiler has been extensively reworked and various errors in its output have been corrected. (Con-
tributed by Fred Fred L. Drake, Jr. and Tim Peters.)

• Thesocket module can be compiled to support IPv6; specify the--enable-ipv6option to Python’s configure
script. (Contributed by Jun-ichiro “itojun” Hagino.)

• Two new format characters were added to thestruct module for 64-bit integers on platforms that support the
C long long type. ‘q’ is for a signed 64-bit integer, and ‘Q’ is for an unsigned one. The value is returned in
Python’s long integer type. (Contributed by Tim Peters.)

• In the interpreter’s interactive mode, there’s a new built-in functionhelp() that uses thepydoc module
introduced in Python 2.1 to provide interactive help.help(object) displays any available help text about
object. help() with no argument puts you in an online help utility, where you can enter the names of functions,
classes, or modules to read their help text. (Contributed by Guido van Rossum, using Ka-Ping Yee’spydoc
module.)

• Various bugfixes and performance improvements have been made to the SRE engine underlying there module.
For example, there.sub() andre.split() functions have been rewritten in C. Another contributed patch
speeds up certain Unicode character ranges by a factor of two, and a newfinditer() method that returns
an iterator over all the non-overlapping matches in a given string. (SRE is maintained by Fredrik Lundh. The
BIGCHARSET patch was contributed by Martin von Löwis.)

• Thesmtplib module now supports RFC 2487, “Secure SMTP over TLS”, so it’s now possible to encrypt the
SMTP traffic between a Python program and the mail transport agent being handed a message.smtplib also
supports SMTP authentication. (Contributed by Gerhard Häring.)

• The imaplib module, maintained by Piers Lauder, has support for several new extensions: the NAMESPACE
extension defined in RFC 2342, SORT, GETACL and SETACL. (Contributed by Anthony Baxter and Michel
Pelletier.)

• The rfc822 module’s parsing of email addresses is now compliant with RFC 2822, an update to RFC 822.
(The module’s name isnot going to be changed to ‘rfc2822 ’.) A new package,email , has also been added
for parsing and generating e-mail messages. (Contributed by Barry Warsaw, and arising out of his work on
Mailman.)

• The difflib module now contains a newDiffer class for producing human-readable lists of changes (a
“delta”) between two sequences of lines of text. There are also two generator functions,ndiff() andre-
store() , which respectively return a delta from two sequences, or one of the original sequences from a delta.
(Grunt work contributed by David Goodger, from ndiff.py code by Tim Peters who then did the generatoriza-
tion.)

• New constantsascii letters , ascii lowercase , and ascii uppercase were added to the
string module. There were several modules in the standard library that usedstring.letters to mean
the ranges A-Za-z, but that assumption is incorrect when locales are in use, becausestring.letters varies
depending on the set of legal characters defined by the current locale. The buggy modules have all been fixed to
useascii letters instead. (Reported by an unknown person; fixed by Fred L. Drake, Jr.)

• The mimetypes module now makes it easier to use alternative MIME-type databases by the addition of a
MimeTypes class, which takes a list of filenames to be parsed. (Contributed by Fred L. Drake, Jr.)

• A Timer class was added to thethreading module that allows scheduling an activity to happen at some
future time. (Contributed by Itamar Shtull-Trauring.)

15

10 Interpreter Changes and Fixes

Some of the changes only affect people who deal with the Python interpreter at the C level because they’re writing
Python extension modules, embedding the interpreter, or just hacking on the interpreter itself. If you only write Python
code, none of the changes described here will affect you very much.

• Profiling and tracing functions can now be implemented in C, which can operate at much higher speeds
than Python-based functions and should reduce the overhead of profiling and tracing. This will be of in-
terest to authors of development environments for Python. Two new C functions were added to Python’s
API, PyEval SetProfile() and PyEval SetTrace() . The existingsys.setprofile() and
sys.settrace() functions still exist, and have simply been changed to use the new C-level interface. (Con-
tributed by Fred L. Drake, Jr.)

• Another low-level API, primarily of interest to implementors of Python debuggers and development tools,
was added.PyInterpreterState Head() and PyInterpreterState Next() let a caller walk
through all the existing interpreter objects;PyInterpreterState ThreadHead() and PyThread-
State Next() allow looping over all the thread states for a given interpreter. (Contributed by David Beaz-
ley.)

• A new ‘et ’ format sequence was added toPyArg ParseTuple ; ‘et ’ takes both a parameter and an encoding
name, and converts the parameter to the given encoding if the parameter turns out to be a Unicode string, or
leaves it alone if it’s an 8-bit string, assuming it to already be in the desired encoding. This differs from the ‘es ’
format character, which assumes that 8-bit strings are in Python’s default ASCII encoding and converts them
to the specified new encoding. (Contributed by M.-A. Lemburg, and used for the MBCS support on Windows
described in the following section.)

• A different argument parsing function,PyArg UnpackTuple() , has been added that’s simpler and presum-
ably faster. Instead of specifying a format string, the caller simply gives the minimum and maximum number of
arguments expected, and a set of pointers toPyObject* variables that will be filled in with argument values.

• Two new flagsMETH NOARGSandMETH Oare available in method definition tables to simplify implementa-
tion of methods with no arguments or a single untyped argument. Calling such methods is more efficient than
calling a corresponding method that usesMETH VARARGS. Also, the oldMETH OLDARGSstyle of writing C
methods is now officially deprecated.

• Two new wrapper functions,PyOS snprintf() andPyOS vsnprintf() were added to provide cross-
platform implementations for the relatively newsnprintf() andvsnprintf() C lib APIs. In contrast
to the standardsprintf() andvsprintf() functions, the Python versions check the bounds of the buffer
used to protect against buffer overruns. (Contributed by M.-A. Lemburg.)

• The PyTuple Resize() function has lost an unused parameter, so now it takes 2 parameters instead of
3. The third argument was never used, and can simply be discarded when porting code from earlier versions to
Python 2.2.

11 Other Changes and Fixes

As usual there were a bunch of other improvements and bugfixes scattered throughout the source tree. A search
through the CVS change logs finds there were 527 patches applied, and 683 bugs fixed; both figures are likely to be
underestimates. Some of the more notable changes are:

• The code for the MacOS port for Python, maintained by Jack Jansen, is now kept in the main Python CVS tree,
and many changes have been made to support MacOS X.

The most significant change is the ability to build Python as a framework, enabled by supply-
ing the --enable-framework option to the configure script when compiling Python. According to

16 11 Other Changes and Fixes

Jack Jansen, “This installs a self-contained Python installation plus the OS X framework ”glue” into
‘ /Library/Frameworks/Python.framework’ (or another location of choice). For now there is little immediate added
benefit to this (actually, there is the disadvantage that you have to change your PATH to be able to find Python),
but it is the basis for creating a full-blown Python application, porting the MacPython IDE, possibly using
Python as a standard OSA scripting language and much more.”

Most of the MacPython toolbox modules, which interface to MacOS APIs such as windowing, QuickTime,
scripting, etc. have been ported to OS X, but they’ve been left commented out in ‘setup.py’. People who want
to experiment with these modules can uncomment them manually.

• Keyword arguments passed to builtin functions that don’t take them now cause aTypeError exception to be
raised, with the message ”functiontakes no keyword arguments”.

• Weak references, added in Python 2.1 as an extension module, are now part of the core because they’re used
in the implementation of new-style classes. TheReferenceError exception has therefore moved from the
weakref module to become a built-in exception.

• A new script, ‘Tools/scripts/cleanfuture.py’ by Tim Peters, automatically removes obsoletefuture state-
ments from Python source code.

• An additional flags argument has been added to the built-in functioncompile() , so the behaviour of
future statements can now be correctly observed in simulated shells, such as those presented by IDLE

and other development environments. This is described in PEP 264. (Contributed by Michael Hudson.)

• The new license introduced with Python 1.6 wasn’t GPL-compatible. This is fixed by some minor textual
changes to the 2.2 license, so it’s now legal to embed Python inside a GPLed program again. Note that Python
itself is not GPLed, but instead is under a license that’s essentially equivalent to the BSD license, same as it
always was. The license changes were also applied to the Python 2.0.1 and 2.1.1 releases.

• When presented with a Unicode filename on Windows, Python will now convert it to an MBCS encoded string,
as used by the Microsoft file APIs. As MBCS is explicitly used by the file APIs, Python’s choice of ASCII
as the default encoding turns out to be an annoyance. On Unix, the locale’s character set is used iflo-
cale.nl langinfo(CODESET) is available. (Windows support was contributed by Mark Hammond with
assistance from Marc-André Lemburg. Unix support was added by Martin von Löwis.)

• Large file support is now enabled on Windows. (Contributed by Tim Peters.)

• The ‘Tools/scripts/ftpmirror.py’ script now parses a ‘.netrc’ file, if you have one. (Contributed by Mike Romberg.)

• Some features of the object returned by thexrange() function are now deprecated, and trigger warnings when
they’re accessed; they’ll disappear in Python 2.3.xrange objects tried to pretend they were full sequence
types by supporting slicing, sequence multiplication, and thein operator, but these features were rarely used
and therefore buggy. Thetolist() method and thestart , stop , andstep attributes are also being
deprecated. At the C level, the fourth argument to thePyRange New() function, ‘repeat ’, has also been
deprecated.

• There were a bunch of patches to the dictionary implementation, mostly to fix potential core dumps if a dictio-
nary contains objects that sneakily changed their hash value, or mutated the dictionary they were contained in.
For a while python-dev fell into a gentle rhythm of Michael Hudson finding a case that dumped core, Tim Peters
fixing the bug, Michael finding another case, and round and round it went.

• On Windows, Python can now be compiled with Borland C thanks to a number of patches contributed by Stephen
Hansen, though the result isn’t fully functional yet. (But thisis progress...)

• Another Windows enhancement: Wise Solutions generously offered PythonLabs use of their InstallerMaster 8.1
system. Earlier PythonLabs Windows installers used Wise 5.0a, which was beginning to show its age. (Packaged
up by Tim Peters.)

17

• Files ending in ‘.pyw ’ can now be imported on Windows. ‘.pyw ’ is a Windows-only thing, used to indicate
that a script needs to be run using PYTHONW.EXE instead of PYTHON.EXE in order to prevent a DOS console
from popping up to display the output. This patch makes it possible to import such scripts, in case they’re also
usable as modules. (Implemented by David Bolen.)

• On platforms where Python uses the Cdlopen() function to load extension modules, it’s now possible to
set the flags used bydlopen() using thesys.getdlopenflags() and sys.setdlopenflags()
functions. (Contributed by Bram Stolk.)

• The pow() built-in function no longer supports 3 arguments when floating-point numbers are supplied.
pow(x, y, z) returns(x**y) %z , but this is never useful for floating point numbers, and the final re-
sult varies unpredictably depending on the platform. A call such aspow(2.0, 8.0, 7.0) will now raise a
TypeError exception.

12 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with various
drafts of this article: Fred Bremmer, Keith Briggs, Andrew Dalke, Fred L. Drake, Jr., Carel Fellinger, David Goodger,
Mark Hammond, Stephen Hansen, Michael Hudson, Jack Jansen, Marc-André Lemburg, Martin von L̈owis, Fredrik
Lundh, Michael McLay, Nick Mathewson, Paul Moore, Gustavo Niemeyer, Don O’Donnell, Tim Peters, Jens Quade,
Tom Reinhardt, Neil Schemenauer, Guido van Rossum, Greg Ward.

18 12 Acknowledgements

	1 Introduction
	2 PEPs 252 and 253: Type and Class Changes
	2.1 Old and New Classes
	2.2 Descriptors
	2.3 Multiple Inheritance: The Diamond Rule
	2.4 Attribute Access
	2.5 Related Links

	3 PEP 234: Iterators
	4 PEP 255: Simple Generators
	5 PEP 237: Unifying Long Integers and Integers
	6 PEP 238: Changing the Division Operator
	7 Unicode Changes
	8 PEP 227: Nested Scopes
	9 New and Improved Modules
	10 Interpreter Changes and Fixes
	11 Other Changes and Fixes
	12 Acknowledgements

