Python/C API Reference Manual

Release 2.4a0

Guido van Rossum
Fred L. Drake, Jr., editor

September 23, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C artd-@rogrammers who want to write extension modules or embed
Python. It is a companion t&xtending and Embedding the Python Interprewwhich describes the general
principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue
to work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

Introduction 1
1.1 Include Files. 1
1.2 Objects, Typesand Reference Counts i i i i i it e e 2
1.3 EXCEPLiONS. o e e e e 5
1.4 Embedding Python e 7
The Very High Level Layer 9
Reference Counting 11
Exception Handling 13
4.1 Standard EXCeptions L 16
4.2 Deprecation of String Exceptions 17
Utilities 19
5.1 Operating System Utilities e 19
5.2 ProcessControl. 19
5.3 Importing Modules e 20
5.4 Datamarshalling support. e e 22
5.5 Parsing arguments and buildingvalues. Lo o 23
Abstract Objects Layer 29
6.1 ObjectProtocol e 29
6.2 NumberProtocol e e 32
6.3 Sequence Protocal 35
6.4 Mapping Protocol e 37
6.5 Iterator Protocol. 38
6.6 Buffer Protocol e 38
Concrete Objects Layer 41
7.1 Fundamental Objects. e e 41
7.2 Numeric Objects. e 42
7.3 Sequence Objects. 46
7.4 Mapping Objects 58
7.5 OtherObjects e e 60
Initialization, Finalization, and Threads 67
8.1 Thread State and the Global InterpreterLack L. 70
8.2 Profiingand Tracing e e 74
8.3 Advanced Debugger SUpport L e e 75
Memory Management 77
9.1 OVEIVIEW . . o ot i e e e e e e e 77
9.2 MemorylInterface e e 78

9.3 EXamples e e e 78

10 Object Implementation Support 81
10.1 Allocating ObjectsontheHeap e 81
10.2 Common ObjeCt StrUCtUreS o e e e e 82
10.3 Type ObJecCts. o o 84
10.4 Mapping Object STrUCTUIeS. o e e e e e e 96
10.5 Number Object Structures. o e e 96
10.6 Sequence ObjeCt Structures. 0 e e e e 96
10.7 Buffer Object Structures o e e e 96
10.8 Supporting the Iterator Protocol. e 97
10.9 Supporting Cyclic Garbarge Collection. 97

A Reporting Bugs 101

B History and License 103
B.1 Historyofthesoftware e 103
B.2 Terms and conditions for accessing or otherwise using Python 103

Index 107

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahdl frogrammers access to the Python interpreter

at a variety of levels. The API is equally usable front+C but for brevity it is generally referred to as the
Python/C API. There are two fundamentally different reasons for using the Python/C API. The first reason is to
write extension modulefor specific purposes; these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a component in a larger application; this
technique is generally referred to @smbeddind®ython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well.
There are several tools that automate the process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is less straightforward than writing an
extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it's probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C APl are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headerssstdio.h> , <string.h> , <errno.h>
<limits.h> | and<stdlib.h> (if available). Since Python may define some pre-processor definitions which
affect the standard headers on some systems, you must in¢luther.h’ before any standard headers are in-
cluded.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of
the prefixesPy’ or ‘ _Py’. Names beginning with_‘Py’ are for internal use by the Python implementation and
should not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin \Wgh or * _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names begin-
ning with one of these prefixes.

The header files are typically installed with Python. Omik, these are located in the directories
‘prefix/include/pythonversior’ and ‘exec_prefix/include/pythonversior’, where prefix and exeqrefix are defined
by the corresponding parameters to Pyth@o'sfigure script andversionis sys.version[:3] . On Windows,
the headers are installed ipré&fix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler's search path for includest Do
place the parent directories on the search path and the#inskide <python2.4/Python.h> ", this will

break on multi-platform builds since the platform independent headers under prefix include the platform specific
headers from exegrefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the
entry points to bextern "C" , so there is no need to do anything special to use the API frém C

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value &y@pgect* . This

type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types
are treated the same way by the Python language in most situations (e.g., assignments, scope rules, and argument
passing), it is only fitting that they should be represented by a single C type. Almost all Python objects live on
the heap: you never declare an automatic or static variable ofRy@#ject , only pointer variables of type
PyObject* can be declared. The sole exception are the type objects; since these must never be deallocated, they
are typically statid®®yTypeObject objects.

All Python objects (even Python integers) haviypeand areference countAn object’s type determines what

kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in the
Python Reference ManyalFor each of the well-known types there is a macro to check whether an object is of
that type; for instancePyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When an object’s reference
count becomes zero, the object is deallocated. If it contains references to other objects, their reference count
is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count
become zero, and so on. (There’s an obvious problem with objects that reference each other here; for now, the
solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the RyadMCREF() to
increment an object’s reference count by one, BRdDECREF() to decrement it by one. ThHey _DECREF()

macro is considerably more complex than the incref one, since it must check whether the reference count becomes
zero and then cause the object’s deallocator to be called. The deallocator is a function pointer contained in the
object’s type structure. The type-specific deallocator takes care of decrementing the reference counts for other
objects contained in the object if this is a compound object type, such as a list, as well as performing any additional
finalization that's needed. There’s no chance that the reference count can overflow; at least as many bits are used
to hold the reference count as there are distinct memory locations in virtual memory (assireafgong)

>= sizeof(char*)). Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an
object. In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes
down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the
reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as arguments to C functions in an extension
module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing its
reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from
aPy_DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begirBy@iect _’,
‘PyNumber_’, ‘ PySequence _’ or ‘PyMapping _"). These operations always increment the reference count
of the object they return. This leaves the caller with the responsibility tiPsalDECREF() when they are done
with the result; this soon becomes second nature.

2 Chapter 1. Introduction

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in telmmsefship of ref-
erences Note that we talk of owning references, never of owning objects; objects are always shared! When a
function owns a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller)
or by callingPy_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its
caller, the caller is said to receivenawreference. When no ownership is transferred, the caller is sdidrtow

the reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple

or list into which the item is put!). These functions were designed to steal a reference because of a common
idiom for populating a tuple or list with newly created objects; for example, the code to create th€ltuple

2, "three") could look like this (forgetting about error handling for the moment; a better way to code this is
shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt_FromLong(2L));
PyTuple_Setitem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple _Setltem() is the only way to set tuple itemsPySequence _Setltem() and
PyObject _Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written usihd.ist _New() andPyList _Setltem() . Such
code can also usySequence _Setltem() ; this illustrates the difference between the two (the extra
Py_DECREF() calls):

PyObject *, *x;

| = PyList_New(3);

X = Pyint_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
X = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fuigtioBuildValue() , that

can create most common objects from C values, directedfbynzat string For example, the above two blocks

of code could be replaced by the following (which also takes care of the error checking):

PyObject *t, *I;

t
I

Py BuildVvalue(“(iis)", 1, 2, "three");
Py_BuildValue('fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are

only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don't have to increment a reference count so you can give
a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any mutable
sequence) to a given item:

1.2. Objects, Types and Reference Counts 3

int
set_all(PyObject *target, PyObject *item)

int i, n;

n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;

}

return O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly,
and the reference you get is the only reference to the object. Therefore, the generic functions that return object
references, lik®yObject _Getltem() andPySequence _Getltem() , always return a new reference (the

caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you
call only —the plumagdthe type of the type of the object passed as an argument to the fundtiesi't enter

into it! Thus, if you extract an item from a list usiyList _Getltem() , you don’t own the reference — but

if you obtain the same item from the same list udtyBequence _Getltem() (which happens to take exactly

the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

long
sum_list(PyObject *list)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

4 Chapter 1. Introduction

long
sum_sequence(PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int ,long ,double andchar* . Afew structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can
raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a
function encounters an error, it sets an exception, discards any object references that it owns, and returns an error
indicator — usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error.

Very few functions return no explicit error indicator or have an ambiguous return value, and require explicit testing
for errors withPyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded
application). A thread can be in one of two states: an exception has occurred, or not. The function
PyErr _Occurred() can be used to check for this: it returns a borrowed reference to the exception type object
when an exception has occurred, afidLL otherwise. There are a number of functions to set the exception state:
PyErr _SetString() is the most common (though not the most general) function to set the exception state,
andPyErr _Clear() clears the exception state.

The full exception state consists of three objects (all of which caxlel): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python sysbects _type ,

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent
the last exception being handled by a Pytlign ... except statement, while the C level exception state only
exists while an exception is being passed on between C functions until it reaches the Python bytecode interpreter’'s
main loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the functionsys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception

1.3. Exceptions 5

will save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents
common bugs in exception handling code caused by an innocent-looking function overwriting the exception being
handled; it also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames
in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any
object references that it owns, and return an error indicator, but it sinotkkt another exception — that would
overwrite the exception that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown suithesequence() example

above. It so happens that that example doesn’'t need to clean up any owned references when it detects an error.
The following example function shows some error cleanup. First, to remind you why you like Python, we show
the equivalent Python code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int

incr_item(PyObject *dict, PyObject *key)

{
[* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
[* Handle KeyError only: */
if ('PyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pyint_FromLong(OL);
if (item == NULL)
goto error;

}
const_one = Pyint_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of goto statement in C! It illustrates the use of
PyErr _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNddl_L (note the X' in the name;Py _DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned refer-
ences are initialized thlULL for this to work; likewise, the proposed return value is initializedlto(failure) and

only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to
worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the
interpreter can only be used after the interpreter has been initialized.

The basic initialization function iBy_Initialize() . This initializes the table of loaded modules, and creates
the fundamental modules_builtin ~ __, __main __, sys, andexceptions . It also initializes the module

1.4. Embedding Python 7

search pathsys.path).

Py _lInitialize() does not set the “script argument lissyg.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a caPy&ys _SetArgv(argc, argv) subse-
guent to the call t®y _Initialize()

On most systems (in particular, onNXX and Windows, although the details are slightly different),

Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory nantiBgbython2.4’ relative to the parent directory

where the executable namagthon’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found/usr/local/bin/python’, it will assume that the libraries are in
‘lusr/localllib/python2.4’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calipgSetProgramName(file) before calling

Py _Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all
defined in Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call toPy _lInitialize()) or the application is simply done with its use of Python and wants to
free all memory allocated by Python. This can be accomplished by cdyndrinalize() . The function

Py _Islnitialized() returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not
let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input ,Py_file _input ,andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions t&lkeE* parameters. On particular issue which needs to be handled
carefully is that thé=ILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken
thatFILE* parameters are only passed to these functions if it is certain that they were created by the same library
that the Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python.
The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main() function. It is important to note that the argument list may be modified (but the contents of
the strings pointed to by the argument list are not). The return value will be the integer passed to the
sys.exit() function, 1 if the interpreter exits due to an exception,2if the parameter list does not
represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, char *filenamé
If fp refers to a file associated with an interactive device (console or terminal inputNox U
pseudo-terminal), return the value BfyRun_lInteractiveLoop() , otherwise return the result of
PyRun_SimpleFile() . If filenameis NULL, this function use§???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code freommandn the __main __ module. If__main __ does not already
exist, it is created. Returrson success ol if an exception was raised. If there was an error, there is no
way to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenam¢
Similar to PyRun_SimpleString() , but the Python source code is read fréminstead of an in-
memory stringfilenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive defileeartieis NULL,
"???" is used instead. The user will be prompted ussyg.psl andsys.ps2 . ReturnsO when
the input was executed successfully, if there was an exception, or an error code from téecbde.h’
include file distributed as part of Python if there was a parse error. (Noteethaide.h’ is not included by
‘Python.h’, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, char *filename¢
Read and execute statements from a file associated with an interactive deviceomisl reached. If
filenameis NULL, "???" is used instead. The user will be prompted usigg.psl andsys.ps2
Returns0 atEOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fratn using the start tokegtart. The result can be used to create a code object

which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int staft
Similar toPyParser _SimpleParseString() , but the Python source code is read fripinstead of
an in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNNew reference
Execute Python source code fratr in the context specified by the dictionarigkbalsandlocals. The
parametestart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objelt bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Similar toPyRun_String() , but the Python source code is read fripiinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codsrirreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shd@id beal _input ,
Py_file _input , orPy_single _input . The filename specified bjlenameis used to construct the
code object and may appear in tracebackSyortaxError exception messages. This retuNidLLif the
code cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python
source code.

int Py_single _input
The start symbol from the Python grammar for a single statement; for us@witBompileString()
This is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py

Py_INCREH PyObject *g
Increment the reference count for object The object must not bBULL; if you aren’t sure that it isn’t
NULL, usePy_XINCREF() .

Py_XINCREK PyObject *9
Increment the reference count for objeciThe object may b&lULL, in which case the macro has no effect.

Py_DECREFPyObject *9
Decrement the reference count for objectThe object must not bMULL; if you aren’t sure that it isn't
NULL, usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function

(which must not belULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance witha__del __() method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state bélgreDECREF() is invoked. For example, code

to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then calf _DECREF() for the temporary variable.

Py_XDECREFEPyObject *g
Decrement the reference count for object The object may b&ULL, in which case the macro has no
effect; otherwise the effect is the same asRgr DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter coré?y_Dealloc()
ForgetReference() , _Py_NewReference() ,aswellas the global variable®Py_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat likentieetino variable: there

is a global indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will
set it to indicate the cause of the error on failure. Most functions also return an error indicator, bRulallyf

they are supposed to return a pointer; Dorif they return an integer (exception: tRgArg _*() functions return

1 for success and for failure).

When a function must fail because some function it called failed, it generally doesn'’t set the error indicator; the
function it called already set it. Itis responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); ihehouitinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C
API may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python vasigbes _type
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in vari-
ous ways. There is a separate error indicator for each thread.

void PyErr _Print ()
Print a standard traceback dgs.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return value Borrowed reference
Test whether the error indicator is set. If set, return the excepgjpe(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not
own a reference to the return value, so you do not nedytdECREF() it. Note: Do not compare the
return value to a specific exception; uBgErr _ExceptionMatches() instead, shown below. (The
comparison could easily fail since the exception may be an instance instead of a class, in the case of a class
exception, or it may the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg

Equivalentto PyErr _GivenExceptionMatches(PyErr _Occurred(), exq . This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr _GivenExceptionMatches (PyObiject *given, PyObject *eXc
Return true if thegivenexception matches the exceptionerc If excis a class object, this also returns
true whengivenis an instance of a subclass.eicis a tuple, all exceptions in the tuple (and recursively in
subtuples) are searched for a matchgiVfenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returnedPylgrr _Fetch() below can be “unnormalized”,
meaning that excis a class object butval is not an instance of the same class. This function can be used
to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

void PyErmrr _Clear ()

13

Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables tdULL Ifitis set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may MELL even when the type object is nolote: This function is
normally only used by code that needs to handle exceptions or by code that needs to save and restore the
error indicator temporarily.

void PyErr _Restore (PyObject*type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects are&NULL, the error indicator is cleared. Do not paddldLLtype and norNULLvalue or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand
this, don’t use this function. | warned yowNpte: This function is normally only used by code that needs to
save and restore the error indicator temporarily;RgErr _Fetch() to save the current exception state.

void PyErmrr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, e2yExc _RuntimeError . You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

void PYErmr _SetObject (PyObject *type, PyObject *val)e
This function is similar tdPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr _Format (PyObject *exception, const char *format)...
Return value:AlwaysNULL
This function sets the error indicator and retuMidLL exceptionshould be a Python exception (class,

not an instance). format should be a string, containing format codes, similarptontf() . The
width.precision before a format code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aimt parameter

d’ Number in decimal, as ant parameter

‘X’ Number in hexadecimal, as amt parameter

‘s’ A string, as a&har * parameter

‘p’ A hex pointer, as &oid * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

void PYErr _SetNone (PyObject *typ¢
This is a shorthand folPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypeError, messagg’, where messageéndi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
Return value:AlwaysNULL
This is a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLso an object allo-
cation function can writereturn PyErr _NoMemory(); ’when it runs out of memory.

PyObject* PyErr _SetFromErrno (PyObject *typé
Return value:AlwaysNULL
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variablerrno . It constructs a tuple object whose first item is the integreno value
and whose second item is the corresponding error message (gottestfeonor()), and then calls
‘PyErr _SetObject(type objec)’. On UNIx, when theerrno value iSEINTR, indicating an inter-
rupted system call, this calRyErr _CheckSignals() , and if that set the error indicator, leaves it set
to that. The function always returbdJLL, so a wrapper function around a system call can wraéurn
PyErr _SetFromErmo(typd; ' when the system call returns an error.

14 Chapter 4. Exception Handling

PyObject* PyErr _SetFromErrnoWithFilename (PyObject *type, char *filename
Return value:AlwaysNULL
Similar to PyErr _SetFromErro() , with the additional behavior that fllenameis not NULL, it is
passed to the constructor tyfpe as a third parameter. In the case of exceptions sud®@Bsror and
OSError |, this is used to define tHdename attribute of the exception instance.

PyObject* PyErr _SetFromWindowsErr (intierr)
Return value:AlwaysNULL
This is a convenience function to raigéindowsError . If called withierr of O, the error code returned
by a call toGetLastError() is used instead. It calls the Win32 functiBormatMessage() to re-
trieve the Windows description of error code giveniéry or GetLastError() , then it constructs a tuple
object whose first item is thierr value and whose second item is the corresponding error message (got-
ten fromFormatMessage()), and then callsPyErr _SetObject(PyExc WindowsError objec) .
This function always returndULL Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErr (PyObject *type, int iery
Similar toPyErr _SetFromWindowsErr() , with an additional parameter specifying the exception type
to be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr _SetFromWindowsErrWithFilename (intierr, char *filename¢
Return valueAlwaysNULL
Similar toPyErr _SetFromWindowsErr() , with the additional behavior that filenameis notNULL,
it is passed to the constructor\findowsError as a third parameter. Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *file-

nameg
Similar toPyErr _SetFromWindowsErrWithFilename() , with an additional parameter specifying
the exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr _BadinternalCall 0
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr _Warn(PyObject *category, char *message
Issue a warning message. Témtegoryargument is a warning category (see belowNarLL; themessage
argument is a message string.

This function normally prints a warning messagesys.stderr however, it is also possible that the user

has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports th@arnings module to do the heavy lifting). The return valueQisf no
exception is raised, ol if an exception is raised. (It is not possible to determine whether a warning
message is actually printed, nor what the reason is for the exception; this is intentional.) If an exception is
raised, the caller should do its normal exception handling (for exarRgleDECREF() owned references

and return an error value).

Warning categories must be subclasse@/afning ; the default warning category BuntimeWarning

The standard Python warning categories are available as global variables whose names are
‘PyExc ' followed by the Python exception name. These have the typeEObject* ;

they are all class objects. Their names aRyExc _Warning , PyExc _UserWarning ,

PyExc _DeprecationWarning , PyExc_SyntaxWarning , PyExc _RuntimeWarning , and

PyExc _FutureWarning . PyExc _Warning is a subclass dPyExc _Exception ;the other warning
categories are subclassedyfExc _Warning .

For information about warning control, see the documentation fovdraings module and thew option
in the command line documentation. There is no C API for warning control.

int PyErr _WarnExplicit (PyObject *category, char *message, char *flename, int lineno, char *module,

PyObject *registry
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrap-
per around the Python functiomarnings.warn _explicit() , see there for more information. The

moduleandregistryarguments may be set MIULL to get the default effect described there.
int PyErr _CheckSignals ()

15

void

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. $ighal module is supported, this

can invoke a signal handler written in Python. In all cases, the default effe®I@&NT is to raise the
Keyboardinterrupt exception. If an exception is raised the error indicator is set and the function re-
turns1; otherwise the function returs The error indicator may or may not be cleared if it was previously
set.

PyErr _Setinterrupt 0
This function is obsolete. It simulates the effect ofSSGINT signal arriving — the next time
PyErr _CheckSignals() is called, Keyboardinterrupt will be raised. It may be called with-
out holding the interpreter lock.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict

void

Return value:New reference

This utility function creates and returns a new exception object. nEmeeargument must be the name of
the new exception, a C string of the fonmodule.class . The baseanddict arguments are normally
NULL This creates a class object derived from the root for all exceptions, the built-in Bacegtion
(accessible in C aByExc _Exception). The __module __ attribute of the new class is set to the first
part (up to the last dot) of theameargument, and the class hame is set to the last part (after the last dot).
Thebaseargument can be used to specify an alternate base classlicElaggument can be used to specify

a dictionary of class variables and methods.

PyErr _WriteUnraisable (PyObject *ob)
This utility function prints a warning messagesgs.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occursinan__del __() method.

The function is called with a single argumentij that identifies where the context in which the unraisable
exception occurred. The repr obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose nam@&yfaxe ‘' followed by the
Python exception name. These have the fyp®bject* ; they are all class objects. For completeness, here are
all the variables:

16

Chapter 4. Exception Handling

C Name

Python Name

Notes

Notes:

PyExc _Exception

PyExc _StandardError
PyExc _ArithmeticError
PyExc _LookupError
PyEXxc _AssertionError
PyExc _AttributeError
PyExc _EOFError

PyExc _EnvironmentError
PyExc _FloatingPointError
PyExc _IOError

PyExc _ImportError
PyExc _IndexError

PyExc _KeyError

PyExc _KeyboardInterrupt
PyExc _MemoryError
PyExc _NameError

PyExc _NotImplementedError
PyExc _OSError

PyExc _OverflowError
PyExc _ReferenceError
PyExc _RuntimeError
PyExc _SyntaxError
PyExc _SystemError
PyExc _SystemEXxit

PyExc _TypeError

PyExc _ValueError

PyExc _WindowsError
PyExc _ZeroDivisionError

Exception
StandardError
ArithmeticError
LookupError
AssertionError
AttributeError
EOFError
EnvironmentError
FloatingPointError
IOError
ImportError
IndexError
KeyError
KeyboardInterrupt
MemoryError
NameError
NotlmplementedError
OSError
OverflowError
ReferenceError
RuntimeError
SyntaxError
SystemError
SystemExit
TypeError
ValueError
WindowsError
ZeroDivisionError

(1) This is a base class for other standard exceptions.

(2) This is the same aseakref.ReferenceError

1)
1)
1)
@)

@)

&)

®)

(3) Only defined on Windows; protect code that uses this by testing that the preprocessoMB8adftNDOWS

is defined.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Egogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also

change in a futu

re release.

4.2. Deprecation of String Exceptions

17

18

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py_FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard 1/O fifewith namefilenameis deemed interactive. This is the case

for files for which fsatty(fileno(fp)) ’is true. If the global flagPy _InteractiveFlag is true,
this function also returns true if tfdenamepointer isNULL or if the name is equal to one of the strings
‘<stdin>’ or'???’

long PyOS GetLastModificationTime (char *filenameg

Return the time of last modification of the fifdename The result is encoded in the same way as the
timestamp returned by the standard C library functiore()

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIs defined (currently on Windows using the Microsoft Visuatompiler and on the
Macintosh).USE_CHECKSTACMill be defined automatically; you should never change the definition in
your own code.

PyOS_sighandler _t PyOS getsig (inti)

Return the current signal handler for sigmal This is a thin wrapper around eithsigaction() or
signal() . Do not call those functions directlyPyOS sighandler _t is a typedef alias fowoid
(*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)
Set the signal handler for signaio beh; return the old signal handler. This is a thin wrapper around either
sigaction() orsignal() . Do not call those functions directl?yOS sighandler _t is a typedef
alias forvoid (*)(int)

5.2 Process Control

void Py_FatalError (const char *message
Print a fatal error message and Kkill the process. No cleanup is performed. This function should only be
invoked when a condition is detected that would make it dangerous to continue using the Python interpreter;
e.g., when the object administration appears to be corrupted. 1ORr,Uhe standard C library function
abort() s called which will attempt to produce adre’ file.

19

void Py_Exit (intstatug
Exit the current process. This cal®yy_Finalize() and then calls the standard C library function
exit(statug .

int Py_AtExit (void (*func) ()
Register a cleanup function to be called®y_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulPy_AtExit() returnsO; on failure, it returns1 . The cleanup function registered last is
called first. Each cleanup function will be called at most once. Since Python’s internal finallization will
have completed before the cleanup function, no Python APIs should be calfeddy

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *namg
Return valueNew reference
This is a simplified interface tBylmport _ImportModuleEx() below, leaving theylobalsandlocals
arguments set tNULL. When thenameargument contains a dot (when it specifies a submodule of a pack-
age), theromlistargument is set to the li§t’] so that the return value is the named module rather than
the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whemamein fact specifies a subpackage instead of a submodule: the submodules specified in

the package’s _all __ variable are loaded.) Return a new reference to the imported moduh,)lolc
with an exception set on failure (the module may still be created in this case — exsysin@dules to
find out).
PyObject* Pylmport _ImportModuleEx (char *name, PyObiject *globals, PyObject *locals, PyObject
*fromlist)

Return valueNew reference
Import a module. This is best described by referring to the built-in Python functieomport __() , as
the standard _import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packagigl bwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndrosatigitywas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes timport __()
function from the__builtins ~ __ of the current globals. This means that the import is done using what-
ever import hooks are installed in the current environment, e.geXxsc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python funetioad() , as the
standardeload() function calls this function directly. Return a new reference to the reloaded module,
or NULLwith an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *nameg
Return valueBorrowed reference
Return the module object corresponding to a module name. nahgeargument may be of the form
package.module). First check the modules dictionary if there’s one there, and if not, create a new
one and insert it in the modules dictionary. RetdddLL with an exception set on failureNote: This
function does not load or import the module; if the module wasn't already loaded, you will get an empty
module object. Us®ylmport _ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name feameare not created if not already present.

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python
bytecode file or obtained from the built-in functioompile() , load the module. Return a new reference
to the module object, dNULL with an exception set if an error occurred (the module may still be created

20 Chapter 5. Utilities

in this case). This function would reload the module if it was already importasartfepoints to a dotted
name of the fornpackage.module , any package structures not already created will still not be created.

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.lpgcand ‘.pyo’ files). The magic number should
be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (adys.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char *, char *)
For internal use only.

PyObject* _Pylmport _FixupExtension (char *, char*)
For internal use only.

int Pylmport _ImportFrozenModule (char *nameg
Load a frozen module nameathme Returnl for success if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport _ImportModule() . (Note the misnomer — this function would reload the module if it
was already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated figaheutility (see
‘Tools/freeze/’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

}

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to point to an array efruct _frozen records, terminated by one whose
members are alNULL or zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport _Extendlnittab() , returning-1 if the table could not be extended. The new module
can be imported by the namame and uses the functidnitfunc as the initialization function called on the
first attempted import. This should be called befBye_Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name
and initialization function for a module built into the interpreter. Programs which embed Python may use
an array of these structures in conjunction witpimport _ExtendlInittab() to provide additional
built-in modules. The structure is defined Iinclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

5.3. Importing Modules 21

int Pylmport _ExtendInittab ('struct _inittab *newtah)
Add a collection of modules to the table of built-in modules. Tibeitabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Return9) on success ol if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfohaitialize()

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data formatresthal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal _WriteLongToFile (long value, FILE *fil§
Marshal elong integer,valug tofile. This will only write the least-significant 32 bits walue regardless
of the size of the nativeong type.

void PyMarshal _WriteObjectToFile (PyObject *value, FILE *fil¢
Marshal a Python objectalue tofile.

PyObject* PyMarshal _WriteObjectToString (PyObject *valug
Return valueNew reference
Return a string object containing the marshalled representatiosl wé

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won’t be handled properly when there’s
no error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal _ReadLongFromFile (FILE *file)
Return a dong from the data stream inRILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native sizéoofy .

int PyMarshal _ReadShortFromFile (FILE *file)
Return a Gshort from the data stream infILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizslodrt .

PyObject* PyMarshal _ReadObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream FllsE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returndNULL

PyObject* PyMarshal _ReadLastObjectFromFile (FILE *ile)
Return valueNew reference
Return a Python object from the data stream in FiLE* opened for reading. Unlike
PyMarshal _ReadObjectFromFile() , this function assumes that no further objects will be read from
the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file. On error, sets the appropriate excE@ieBEr¢or
or TypeError) and returndNULL

PyObject* PyMarshal _ReadObjectFromString (char *string, int len
Return valueNew reference
Return a Python object from the data stream in a character buffer cont&nibgtes pointed to bgtring.
On error, sets the appropriate exceptis®EError or TypeError) and returndNULL

22 Chapter 5. Utilities

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python Interpreter

The first three of these functions described, PyArg _ParseTuple() ,

PyArg _ParseTupleAndKeywords() , and PyArg _Parse() , all useformat stringswhich are used

to tell the function about the expected arguments. The format strings use the same syntax for each of these
functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually

a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument to these functions. In the following
description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type that
matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed.

‘s’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded NUL bytes; if it doegygpeError exception is raised. Unicode objects are
converted to C strings using the default encoding. If this conversion fdilsj@deError s raised.

‘s#’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on$’ stores into two C
variables, the first one a pointer to a character string, the second one its length. In this case the Python string
may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded string version
of the object if such a conversion is possible. All other read-buffer compatible objects pass back a reference
to the raw internal data representation.

‘z’ (string or None) [char *] Like ‘s’, but the Python object may also Bdone, in which case the C pointer is
set toNULL

‘z#’ (string or None or any read buffer compatible object) [char *, int] Thisisto's#'as‘z’isto’‘s’.

‘u’ (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated
buffer of 16-bit Unicode (UTF-16) data. As witls* there is no need to provide storage for the Unicode
data buffer; a pointer to the existing Unicode data is stored inté®thdJNICODEpointer variable whose
address you pass.

‘u#’ (Unicode object) [Py_UNICODE *, int] This variant on U’ stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting
their read-buffer pointer as pointer td’g _UNICODEarray.

‘es’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant on§’ is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and musth@*a which points

to the name of an encoding as a NUL-terminated strindN\OLL, in which case the default encoding is

used. An exception is raised if the named encoding is not known to Python. The second argument must be a
char** ; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg _ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this
buffer and adjustbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem Free() to free the allocated buffer after use.

‘et ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same asés’ except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

5.5. Parsing arguments and building values 23

‘es#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer _leng
This variant on $#' is used for encoding Unicode and objects convertible to Unicode into a character
buffer. Unlike the &s’ format, this variant allows input data which contains NUL characters.

It requires three arguments. The firstis only used as input, and mustiag*a which points to the name of

an encoding as a NUL-terminated stringNWLL, in which case the default encoding is used. An exception

is raised if the named encoding is not known to Python. The second argument mustasgra ; the value

of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and sébuffer to reference the newly allocated storage. The caller is responsible for
callingPyMem. Free() to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg _ParseTuple() will use
this location as the buffer and interpret the initial valuétafffer_lengthas the buffer size. It will then copy
the encoded data into the buffer and NUL-terminate it. If the buffer is not large enogiuaError

will be set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

‘et# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ases#’ except that string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the string object uses the encoding passed in as parameter.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in &l@r .

‘B’ (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

‘h’ (integer) [short int] Convert a Python integer to agbort int

‘H (integer) [unsigned short int] Convert a Python integer to auhsigned short int , without overflow
checking. New in version 2.3.

‘i’ (integer) [int] Convert a Python integer to a plainia .

‘I’ (integer) [unsigned int] Convert a Python integer to aubisigned int , without overflow checking. New
in version 2.3.

‘l * (integer) [long int] Convert a Python integer to aléng int

‘k’ (integer) [unsigned long] Convert a Python integer to a @hsigned long without overflow checking.
New in version 2.3.

‘L’ (integer) [PY _LONG _LONG] Convert a Python integer to aléng long . This format is only available
on platforms that suppolbng long (or _int64 on Windows).

‘K’ (integer) [unsigned PY_LONG _LONG] Convert a Python integer to awhsigned long long with-
out overflow checking. This format is only available on platforms that suppwigned long long
(orunsigned _int64 on Windows). New in version 2.3.

‘c’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, ¢harC
‘f ’ (float) [float] Convert a Python floating point number to dl@at

‘d’ (float) [double] Convert a Python floating point number to al@uble .

‘D (complex) [Py_complex] Convert a Python complex number to &§_complex structure.

‘O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program
thus receives the actual object that was passed. The object’s reference count is not increased. The pointer
stored is noNULL

24 Chapter 5. Utilities

‘O!" (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is similar@y but
takes two C arguments: the first is the address of a Python type object, the second is the address of the C
variable (of typePyObject*) into which the object pointer is stored. If the Python object does not have
the required typelypeError s raised.

‘O& (object) [converter anything] Convert a Python object to a C variable througboaverterfunction. This
takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary type),
converted tovoid * . Theconverterfunction in turn is called as follows:

status = convertef object addresy;

whereobjectis the Python object to be converted aadbresss thevoid* argument that was passed to
thePyArg _Parse*() function. The returnedtatusshould bel for a successful conversion afAdf the
conversion has failed. When the conversion fails,dbieverterfunction should raise an exception.

‘S’ (string) [PyStringObject *] Like ‘O but requires that the Python object is a string object. Raises
TypeError if the object is not a string object. The C variable may also be declarBg@bject*

‘U (Unicode string) [PyUnicodeObject *] Like ‘O but requires that the Python object is a Unicode object.
RaisesTypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject*

‘t# ' (read-only character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-
only buffer interface. Thehar* variable is set to point to the first byte of the buffer, anditite is set
to the length of the buffer. Only single-segment buffer objects are accepgpdError s raised for all
others.

‘W (read-write character buffer) [char *] Similar to ‘s’, but accepts any object which implements the read-
write buffer interface. The caller must determine the length of the buffer by other means, aw#ise
instead. Only single-segment buffer objects are acceptgeeError s raised for all others.

‘w# (read-write character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-
write buffer interface. Thehar * variable is set to point to the first byte of the buffer, andittte is set
to the length of the buffer. Only single-segment buffer objects are accepgpdError s raised for all
others.

‘(item9 ’ (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format
units initems The C arguments must correspond to the individual format unitefns Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously caygelrror to be raised here may
now proceed without an exception. This is not expected to be a problem for existing code.

Itis possible to pass Python long integers where integers are requested; however no proper range checking is done
— the most significant bits are silently truncated when the receiving field is too small to receive the value (actually,
the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They
are:

‘| * Indicates that the remaining arguments in the Python argument list are optional. The C variables correspond-
ing to optional arguments should be initialized to their default value — when an optional argument is not
specifiedPyArg _ParseTuple() does not touch the contents of the corresponding C variable(s).

;7 The list of format units ends here; the string after the colon is used as the function name in error messages
(the “associated value” of the exception tRatArg _ParseTuple() raises).

;' The list of format units ends here; the string after the semicolon is used as the error nmiestsgof the
default error message. Clearly, ‘and ‘; * mutually exclude each other.

Note that any Python object references which are provided to the calleoaosvedreferences; do not decrement
their reference count!

5.5. Parsing arguments and building values 25

Additional arguments passed to these functions must be addresses of variables whose type is determined by the
format string; these are used to store values from the input tuple. There are a few cases, as described in the list of
format units above, where these parameters are used as input values; they should match what is specified for the
corresponding format unit in that case.

For the conversion to succeed, tirg object must match the format and the format must be exhausted. On success,
thePyArg _Parse*() functions return true, otherwise they return false and raise an appropriate exception.

int

int

int

int

PyArg _ParseTuple (PyObject *args, char *format,).
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

PyArg _ParseTupleAndKeywords (PyObject *args, PyObject *kw, char *format, char *keywords[],

Parse the parameters of a function that takes both positional and keyword parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

PyArg _Parse (PyObject *args, char *format,).

Function used to deconstruct the argument lists of “old-style” functions — these are functions which use
the METH OLDARG $arameter parsing method. This is not recommended for use in parameter parsing in
new code, and most code in the standard interpreter has been modified to no longer use this for that purpose.
It does remain a convenient way to decompose other tuples, however, and may continue to be used for that
purpose.

PyArg _UnpackTuple (PyObject *args, char *name, int min, int max)...

A simpler form of parameter retrieval which does not use a format string to specify the types of the argu-
ments. Functions which use this method to retrieve their parameters should be dedlAEd-RARARGS

in function or method tables. The tuple containing the actual parameters should be paaggsditsiust

actually be a tuple. The length of the tuple must be at Isastand no more thamax min andmaxmay

be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values froangs they will contain borrowed refer-
ences. The variables which correspond to optional parameters not giagdyill not be filled in; these

should be initialized by the caller. This function returns true on success and falggs i not a tuple or
contains the wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources famiraekref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref', 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);
}

return result;

}

The call to PyArg _UnpackTuple() in this example is entirely equivalent to this call to
PyArg _ParseTuple()

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

New in version 2.2.

PyObject* Py_BuildvValue (char *format, ..)

Return valueNew reference

Create a new value based on a format string similar to those accepted®yAte _Parse*() family of
functions and a sequence of values. Returns the valbiJat in the case of an error; an exception will be
raised ifNULL is returned.

26

Chapter 5. Utilities

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two

or more format units. If the format string is empty, it retuidsne; if it contains exactly one format unit,

it returns whatever object is described by that format unit. To force it to return a tuple of size O or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, asdgoatite s#’

formats, the required data is copied. Buffers provided by the caller are never referenced by the objects
created byPy_BuildValue() . In other words, if your code invokesalloc() and passes the allocated
memory toPy_BuildValue() , your code is responsible for callifigee() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that the format unit will return; and the entry in [square] brackets is the type of the C
value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such
as ‘'s#"). This can be used to make long format strings a tad more readable.

‘s’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string poinfebisL,
None is used.

‘s#’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is
NULL, the length is ignored ardone is returned.

‘2’ (string or None) [char *] Same ass’.
‘z#’ (string or None) [char *, int] Same ass# .

‘u’ (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a
Python Unicode object. If the Unicode buffer pointeNIELL, None is returned.

‘u#’ (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a
Python Unicode object. If the Unicode buffer pointeN8ILL, the length is ignored andone is
returned.

‘i * (integer) [int] Convert a plain Gnt to a Python integer object.

‘b’ (integer) [char] Same asi*’.

‘h’ (integer) [short int] Same asi*’.

‘|’ (integer) [long int] Convert a dong int to a Python integer object.

‘c’ (string of length 1) [char] Convert a Ant representing a character to a Python string of length 1.

‘d’ (float) [double] Convert a Cdouble to a Python floating point number.

‘f * (float) [float] Same asd’.

‘D (complex) [Py_complex *]Convert a CPy_complex structure to a Python complex number.

‘O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incre-
mented by one). If the object passed in INldLL pointer, it is assumed that this was caused because
the call producing the argument found an error and set an exception. TheRfoiildValue()
will return NULL but won't raise an exception. If no exception has been raise®ystemError is
set.

‘S’ (object) [PyObiject *] Same asO.

‘U (object) [PyObject *] Same asO.

‘N (object) [PyObject *] Same asO, except it doesn’'t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

‘O& (object) [converter anything] Convertanythingto a Python object through@nverterfunction. The
function is called withanything (which should be compatible witlioid *) as its argument and
should return a “new” Python object, BlULLif an error occurred.

‘(itemg ’ (tuple) [matching-item$Convert a sequence of C values to a Python tuple with the same number
of items.

‘[itemq ’ (list) [matching-item$Convert a sequence of C values to a Python list with the same number of
items.

‘{itemg ’ (dictionary) [matching-item$Convert a sequence of C values to a Python dictionary. Each pair
of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tisystemError exception is set andULL returned.

. Parsing arguments and building values 27

28

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object
types (e.g. all numerical types, or all sequence types). When used on object types for which they do not apply,
they will raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagy
Print an objecb, on file fp. Returns-1 on error. The flags argument is used to enable certain printing
options. The only option currently supportedAg_PRINT_RAWIf given, thestr() of the object is
written instead of theepr()

int PyObject _HasAttrString (PyObiject *o, char *attr namg
Returnsl if o has the attributattr_name and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr namg
Return valueNew reference
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successiNGiLL on
failure. This is the equivalent of the Python expressmrattr_name.

int PyObject _HasAttr (PyObject *o, PyObject *attrname
Returnsl if o has the attributattr_name and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnamg
Return valueNew reference
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successiNGiL_L on
failure. This is the equivalent of the Python expressmrattr_name.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statememtattr_name = V.

int PyObject _SetAttr (PyObject *o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statememt attr_name = v'.

int PyObject _DelAttrString (PyObiject *o, char *attr namg
Delete attribute nameattr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrname
Delete attribute nameattr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statementdel o. attr_name.

PyObject* PyObject _RichCompare (PyObject *0l, PyObject *02, int op)d

Return valueNew reference
Compare the values a1l and 02 using the operation specified lmpid, which must be one oPy_LT,

29

Py_LE, Py_EQ Py_NE Py_GT, or Py_GE corresponding te, <=, ==, =, >, or >= respectively. This
is the equivalent of the Python expressiai ‘op 02, whereop is the operator corresponding ogid.
Returns the value of the comparison on succesiirl on failure.

int PyObject _RichCompareBool (PyObject*ol, PyObject*02, int op)d
Compare the values afl and 02 using the operation specified lmpid, which must be one oPy_LT,
Py_LE, Py_EQ Py_NE Py_GT, or Py_GE corresponding te&, <=, ==, =, >, or >= respectively.
Returns-1 on error,0 if the result is false]l otherwise. This is the equivalent of the Python expressin
op 02, whereop is the operator correspondingapid.

int PyObject _Cmyg PyObject *o1, PyObject *02, int *resylt
Compare the values afl and o2 using a routine provided bygl, if one exists, otherwise with a routine
provided byo2. The result of the comparison is returnedr@sult Returns-1 on failure. This is the
equivalent of the Python statemergsult = cmp(o0l, 02)'.

int PyObject _Compare(PyObject *01, PyObject *oR
Compare the values afl and 02 using a routine provided bygl, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined;
usePyErr _Occurred() todetectan error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNNew reference
Compute a string representation of objecReturns the string representation on sucddti,L on failure.
This is the equivalent of the Python expressiogpt(o) '. Called by therepr() built-in function and
by reverse quotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdsgf,L on failure.
This is the equivalent of the Python expressisti(0) '. Called by thestr() built-in function and by
theprint statement.

PyObject* PyObject _Unicode (PyObject*g
Return valueNew reference
Compute a Unicode string representation of obfecReturns the Unicode string representation on suc-
cess,NULL on failure. This is the equivalent of the Python expressiamicode(o0)'. Called by the
unicode() built-in function.

int PyObject _Isinstance (PyObiject *inst, PyObject *cls
Returnsl if instis an instance of the clagts or a subclass ofls, or O if not. On error, returnsl and
sets an exception. Hlsis a type object rather than a class objébtObject _Isinstance() returns
1 if instis of typecls. If clsis a tuple, the check will be done against every entrglgn The result will
be 1 when at least one of the checks retutn®otherwise it will be0. If instis not a class instance aots
is neither a type object, nor a class object, nor a tupkt,must have a__class __ attribute — the class
relationship of the value of that attribute witks will be used to determine the result of this function. New
in version 2.1. Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of exten-
sions to the class system may want to be aware éfalidB are class object8 is a subclass dAif it inherits from

A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the
class relationship of the two objects. When testirjig a subclass o4, if Ais B, PyObject _IsSubclass()

returns true. IfA andB are different objectsB's __bases __ attribute is searched in a depth-first fashionAor

— the presence of the_bases __ attribute is considered sufficient for this determination.

int PyObject _IsSubclass (PyObject *derived, PyObject *cJs
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return®. In case of
an error, returnsl . If clsis a tuple, the check will be done against every entrglén The result will bel
when at least one of the checks retutnstherwise it will be0. If eitherderivedor clsis not an actual class
object (or tuple), this function uses the generic algorithm described above. New in version 2.1. Changed
in version 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable _Check (PyObject*q
Determine if the objeab is callable. Returd if the object is callable an@ otherwise. This function always

30 Chapter 6. Abstract Objects Layer

succeeds.

PyObject* PyObject _Call (PyObject *callable object, PyObject *args, PyObject *Rw

Call a callable Python objedallable_object with arguments given by the tupbegs and named argu-

ments given by the dictionadw. If no named arguments are needkd, may beNULL args must not

be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or
NULL on failure. This is the equivalent of the Python expressapply(callable_object args kw)'’

or ‘callable_objec(* args ** kw)'. New inversion 2.2.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args

Return valueNew reference

Call a callable Python objecillable_object with arguments given by the tupséegs If no arguments are
needed, theargsmay beNULL Returns the result of the call on successNai_L on failure. This is the
equivalent of the Python expressiapply(callable_object args) ’ or ‘callable_objec(* args) .

PyObject* PyObject _CallFunction (PyObject *callable, char *format,).

Return valueNew reference

Call a callable Python objedallable, with a variable number of C arguments. The C arguments are de-
scribed using @y _BuildValue() style format string. The format may BeULL, indicating that no
arguments are provided. Returns the result of the call on succeslLdron failure. This is the equivalent

of the Python expressiompply(callable, args) ' or ‘callable(* args) '.

PyObject* PyObject _CallMethod (PyObiject *o, char *method, char *format,)...

Return valueNew reference

Call the method named of objecto with a variable number of C arguments. The C arguments are described
by a Py_BuildValue() format string. The format may bRULL, indicating that no arguments are
provided. Returns the result of the call on succes8l@tL on failure. This is the equivalent of the Python
expressiono. method args) .

PyObject* PyObject _CallFunctionObjArgs (PyObject *callable, ...NULLD

Return valueNew reference

Call a callable Python objectllable with a variable number dPyObject* arguments. The arguments
are provided as a variable number of parameters followedUiyl. Returns the result of the call on success,
or NULLon failure. New in version 2.2.

PyObject* PyObject _CallMethodObjArgs (PyObject *o, PyObject *name, .NULL)

int

int

int

Return valueNew reference

Calls a method of the object where the name of the method is given as a Python string obj@etnme

It is called with a variable number ¢fyObject* arguments. The arguments are provided as a variable
number of parameters followed BWULL Returns the result of the call on successNaiLL on failure.
New in version 2.2.

PyObject _Hash(PyObject *q
Compute and return the hash value of an obje€n failure, returrl . This is the equivalent of the Python
expressionhash(o) .

PyObject _IsTrue (PyObject*q
Returndl if the objectois considered to be true, afdtherwise. This is equivalent to the Python expression
‘not not 0©'. On failure, return-1 .

PyObject _Not (PyObject *g
Returnd) if the objectois considered to be true, afidbtherwise. This is equivalent to the Python expression
‘not 0o'. On failure, return-1 .

PyObject* PyObject _Type (PyObject *g

int

Return valueNNew reference

Wheno is nonNULL, returns a type object corresponding to the object type of obje®n failure, raises
SystemError and returndNULL This is equivalent to the Python expresstgpe(o) . This function
increments the reference count of the return value. There’s really no reason to use this function instead of
the common expressiam>ob _type , which returns a pointer of typeyTypeObject* , except when

the incremented reference count is needed.

PyObject _TypeCheck (PyObject *o, PyTypeObiject *type
Return true if the objeat is of typetypeor a subtype ofype Both parameters must be ndfJLL New in

6.1. Object Protocol 31

int
int

version 2.2.

PyObject _Length (PyObject *q

PyObject _Size (PyObject *g

Return the length of object. If the objecto provides both sequence and mapping protocols, the sequence
length is returned. On erroil is returned. This is the equivalent to the Python expressang ‘ o) .

PyObject* PyObject _Getltem (PyObject *o, PyObiject *key

int

int

int

Return valueNew reference
Return element ab corresponding to the objekéyor NULL on failure. This is the equivalent of the Python
expressiond[key .

PyObject _Setltem (PyObject *o, PyObject *key, PyObject)v

Map the objeckeyto the valuev. Returns-1 on failure. This is the equivalent of the Python statement
‘o[key = V.

PyObject _Delltem (PyObject*o, PyObject *kgy

Delete the mapping fdkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statement
‘del of key .

PyObject _AsFileDescriptor (PyObject *g

Derives a file-descriptor from a Python object. If the objectis an integer or long integer, its value is returned.
If not, the object'ileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject _Dir (PyObject*Q

Return valueNew reference

This is equivalent to the Python expressidir(0) ’, returning a (possibly empty) list of strings appropri-
ate for the object argument, B{ULL if there was an error. If the argumentNBJLL, this is like the Python
‘dir() ', returning the names of the current locals; in this case, if no execution frame is actividithdn
is returned buPyErr _Occurred() will return false.

PyObject* PyObject _Getlter (PyObject*g

Return valueNew reference

This is equivalent to the Python expressidter(0) . It returns a new iterator for the object argument,
or the object itself if the object is already an iterator. RaibggeError and returndNULL if the object
cannot be iterated.

6.2 Number Protocol

int

PyNumber_Check (PyObject *9
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *01, PyObject *opR

Return valueNew reference
Returns the result of addirgl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol + o2.

PyObject* PyNumber_Subtract (PyObject *o1, PyObject *oR

Return valueNew reference
Returns the result of subtractira® from o1, or NULL on failure. This is the equivalent of the Python
expressionol - oZ2.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *oR

Return valueNew reference
Returns the result of multiplyingl and 02, or NULL on failure. This is the equivalent of the Python
expressionol * oZ2.

PyObject* PyNumber_Divide (PyObject*ol, PyObject *opR

Return valueNew reference
Returns the result of dividing1 by 02, or NULL on failure. This is the equivalent of the Python expression
‘ol / o2.

32

Chapter 6. Abstract Objects Layer

PyObject* PyNumber_FloorDivide (PyObject *o1, PyObject *oR
Return valueNew reference
Return the floor ol divided byo2, or NULL on failure. This is equivalent to the “classic” division of
integers. New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *oR
Return valueNew reference
Return a reasonable approximation for the mathematical valed divided by o2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *o1, PyObject *op
Return valueNNew reference
Returns the remainder of dividingl by 02, or NULL on failure. This is the equivalent of the Python
expressionol % oZ2.

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *oR
Return valueNew reference
See the built-in functiodivmod() . ReturnsNULLon failure. This is the equivalent of the Python expres-
sion ‘divmod(01, 02"

PyObject* PyNumber_Power (PyObject *o1, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiopow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(0l, 02, 03)’, whereo3is optional. Ifo3is to be ignored, pas€By_None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return valueNew reference
Returns the negation af on success, dlULL on failure. This is the equivalent of the Python expression
‘-0.
PyObject* PyNumber_Positive (PyObject *9
Return valueNew reference
Returnso on success, ddULL on failure. This is the equivalent of the Python expressien.

PyObject* PyNumber_Absolute (PyObject *9
Return valueNew reference
Returns the absolute value of or NULL on failure. This is the equivalent of the Python expression
‘abs(0) .

PyObject* PyNumber_Invert (PyObject *9
Return valueNew reference
Returns the bitwise negation ofon success, oNULL on failure. This is the equivalent of the Python
expression™o'.

PyObject* PyNumber_Lshift (PyObject *o1, PyObject *op
Return valueNNew reference
Returns the result of left shiftingl by 02 on success, dlNULL on failure. This is the equivalent of the
Python expressiorol << 02.

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *op
Return valueNNew reference
Returns the result of right shiftingl by 02 on success, dlULL on failure. This is the equivalent of the
Python expressiorol >> 02.

PyObject* PyNumber_And(PyObject *01, PyObject *oR
Return valueNew reference
Returns the “bitwise and” a2 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol & oZ2.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *oR
Return valueNew reference

6.2. Number Protocol 33

Returns the “bitwise exclusive or” @fl by 02 on success, ddULL on failure. This is the equivalent of the
Python expressiorol =~ 02.

PyObject* PyNumber_Or(PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” 0b1 ando2 on success, ddULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObiject *o1, PyObject *oR
Return valueNew reference
Returns the result of addirgf. ando2, or NULLon failure. The operation is doiire-placewhenol supports
it. This is the equivalent of the Python statemestt ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *01, PyObject *opR
Return valueNew reference
Returns the result of subtractim@ from 01, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python statemght-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python statemght*= 02.

PyObject* PyNumber_InPlaceDivide (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of dividingl by 02, or NULLon failure. The operation is doire-placewhenol supports
it. This is the equivalent of the Python statementt /= 02.

PyObject* PyNumber _InPlaceFloorDivide (PyObject *o1, PyObiject *oR
Return valueNew reference
Returns the mathematical of dividirad by 02, or NULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python statemaht//= 02. New in version 2.2.

PyObject* PyNumber _InPlaceTrueDivide (PyObject *01, PyObject *op
Return valueNNew reference
Return a reasonable approximation for the mathematical valed divided by o2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. The operation is doireplacewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObject *o1, PyObject *op
Return valueNew reference
Returns the remainder of dividingl by 02, or NULL on failure. The operation is done-placewhenol
supports it. This is the equivalent of the Python statemght%= 02

PyObject* PyNumber_InPlacePower (PyObject *01, PyObject *02, PyObject *p3
Return valueNew reference
See the built-in functiopow() . ReturndNULLon failure. The operation is dome-placewhenol supports
it. This is the equivalent of the Python statemert “**= 02 when 03 isPy_None, or an in-place variant
of ‘pow(0l, 02, 03’ otherwise. Ifo3is to be ignored, pad8y_None in its place (passinlULL for
o3would cause an illegal memory access).

PyObject* PyNumber _InPlaceLshift (PyObject *01, PyObject *op
Return valueNNew reference
Returns the result of left shiftingl by 02 on success, dlULL on failure. The operation is dorie-place
whenolsupports it. This is the equivalent of the Python statemght<<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of right shiftingl by 02 on success, ddULL on failure. The operation is dorie-place
whenolsupports it. This is the equivalent of the Python statemght>>= 02.

PyObject* PyNumber_InPlaceAnd (PyObiject *o1, PyObject *oR
Return valueNew reference

34 Chapter 6. Abstract Objects Layer

Returns the “bitwise and” 061 ando2 on success anNULL on failure. The operation is dore-place
whenolsupports it. This is the equivalent of the Python statemeht&= 02.

PyObject* PyNumber_InPlaceXor (PyObject*ol, PyObject *oR
Return valueNew reference
Returns the “bitwise exclusive or” a¥l by 02 on success, oNULL on failure. The operation is done
in-placewhenol supports it. This is the equivalent of the Python statemght™ 02.

PyObject* PyNumber_InPlaceOr (PyObject *o0l1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” ob1 ando2 on success, ddULL on failure. The operation is dore-placewhen
olsupports it. This is the equivalent of the Python statemght|= 02.

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byp®bject* . If the objects pointed to bypl
and* p2 have the same type, increment their reference count and i@t(success). If the objects can be
converted to a common numeric type, repl&ge and*p2 by their converted value (with 'new’ reference
counts), and returf. If no conversion is possible, or if some other error occurs, returrgfailure) and
don’t increment the reference counts. The &Number_Coerce(&0l1, &02) is equivalent to the
Python statementd, 02 = coerce(0l, 02)'.

PyObject* PyNumber_Int (PyObject*9
Return valueNew reference
Returns theo converted to an integer object on successNbiLL on failure. If the argument is outside
the integer range a long object will be returned instead. This is the equivalent of the Python expression
‘int(o).
PyObject* PyNumber_Long (PyObject *g
Return valueNew reference
Returns the converted to a long integer object on succes$ydL L on failure. This is the equivalent of the
Python expressioriong(o) .

PyObject* PyNumber_Float (PyObject *9
Return valueNew reference
Returns the converted to a float object on succesdNbi L on failure. This is the equivalent of the Python
expressionfloat(o).

6.3 Sequence Protocol

int PySequence _Check (PyObject *9
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

int PySequence _Size (PyObject *9
Returns the number of objects in sequea@» success, and on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expredsing ‘o) .

int PySequence _Length (PyObject *9
Alternate name foPySequence _Size()

PyObject* PySequence _Concat (PyObject *o1, PyObject *oR
Return valueNew reference
Return the concatenation ol ando2 on success, arldULL on failure. This is the equivalent of the Python
expressionol + oZ2.

PyObject* PySequence _Repeat (PyObject *o, int count
Return valueNNew reference
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of
the Python expressiolm*‘* count.

PyObject* PySequence _InPlaceConcat (PyObject *o1, PyObject *opR
Return valueNew reference
Return the concatenation ofl ando2 on success, andULL on failure. The operation is dorie-place
whenolsupports it. This is the equivalent of the Python expressidn+= 02.

6.3. Sequence Protocol 35

PyObject* PySequence _InPlaceRepeat (PyObject *o, int count
Return valueNew reference
Return the result of repeating sequence objecbunttimes, orNULL on failure. The operation is done
in-placewheno supports it. This is the equivalent of the Python expressiof= count.

PyObject* PySequence _Getltem (PyObject *o, int)
Return valueNew reference
Return theth element ob, or NULL on failure. This is the equivalent of the Python expressapri]*’.

PyObject* PySequence _GetSlice (PyObject*o, intil, intid
Return valueNew reference
Return the slice of sequence objedbetweenl andi2, or NULL on failure. This is the equivalent of the
Python expressioro[il: i2] .

int PySequence _Setltem (PyObject *o, inti, PyObject *v
Assign objecw to theith element ob. Returns1 on failure. This is the equivalent of the Python statement
‘o[i] = V. This functiondoes notteal a reference ta

int PySequence _Delltem (PyObject *o, int)
Delete theith element of objecb. Returns-1 on failure. This is the equivalent of the Python statement
‘del ofi]".

int PySequence _SetSlice (PyObject*o, intil, inti2, PyObject *
Assign the sequence objecto the slice in sequence objeztfrom il to i2. This is the equivalent of the

Python statemenp[il1: i2] = V.

int PySequence _DelSlice (PyObject*o,intil, intiJ
Delete the slice in sequence objecfrom il to i2. Returns-1 on failure. This is the equivalent of the
Python statementel of i1: i2] .

PyObject* PySequence _Tuple (PyObject*g
Return valueNew reference
Returns theo as a tuple on success, aNdJLL on failure. This is equivalent to the Python expression
‘tuple(o).

int PySequence _Count (PyObject *o, PyObject *value
Return the number of occurrenceswvafiuein o, that is, return the number of keys for whiohkey ==
value On failure, returnl . This is equivalent to the Python expressiorcount(valug '.

int PySequence _Contains (PyObject *o, PyObject *value
Determine ifo containsvalue If anitem inois equal tovalue returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressigalue in 0

int PySequence _Index (PyObject *o, PyObject *value
Return the first index for which o[i] == value On error, returnl . This is equivalent to the Python
expressiono.index(valug .

PyObject* PySequence _List (PyObject*g
Return valueNew reference
Return a list object with the same contents as the arbitrary seqoeite returned list is guaranteed to be
new.

PyObject* PySequence _Tuple (PyObject*g
Return valueNew reference
Return a tuple object with the same contents as the arbitrary seqoelfices a tuple, a new reference will
be returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence _Fast (PyObject *o, const char *in
Return valueNew reference
Returns the sequenaeas a tuple, unless it is already a tuple or list, in which case returned. Use
PySequence _Fast _GET_ITEM() to access the members of the result. Retivb& L on failure. If the
object is not a sequence, raisggpeError with mas the message text.

PyObject* PySequence _Fast _GET_ITEM(PyObiject *o, int)
Return valueBorrowed reference

36 Chapter 6. Abstract Objects Layer

Return thdth element ob, assuming thad was returned byPySequence _Fast() , ois notNULL, and
thati is within bounds.

PyObject* PySequence _ITEM(PyObject *o, int)
Return valueNew reference
Return theith element ofo or NULL on failure. Macro form oPySequence _Getltem() but without
checking thatySequence _Check(o) is true and without adjustment for negative indices. New in
version 2.3.

int PySequence _Fast _GET_SIZE (PyObject *q
Returns the length ofo, assuming thato was returned byPySequence _Fast() and that
0 is not NULL The size can also be gotten by callinfgySequence _Size() on o, but
PySequence _Fast _GET_SIZE() is faster because it can assumie a list or tuple.

6.4 Mapping Protocol

int PyMapping _Check (PyObject *g
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

int PyMapping _Length (PyObject *9
Returns the number of keys in objezton success, andl on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expresden(‘ o) .

int PyMapping _DelltemString (PyObject *o, char *key
Remove the mapping for objektyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _Delltem (PyObject *o, PyObject *key
Remove the mapping for objeletyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _HasKeyString (PyObject *o, char *key
On success, returhif the mapping object has the ké&gyandO otherwise. This is equivalent to the Python
expressiond.has _key(key) . This function always succeeds.

int PyMapping _HasKey(PyObject *o, PyObject *key
Returnl if the mapping object has the ké&gyandO otherwise. This is equivalent to the Python expression
‘o.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys (PyObject *9
Return valueNew reference
On success, return a list of the keys in objecOn failure, returrNULL This is equivalent to the Python
expressiono.keys() '

PyObject* PyMapping _Values (PyObject *g
Return valueNew reference
On success, return a list of the values in objedDn failure, returrNULL This is equivalent to the Python
expressiono.values() ’

PyObject* PyMapping _Items (PyObject *9
Return valueNew reference
On success, return a list of the items in objgcivhere each item is a tuple containing a key-value pair. On
failure, returnNULL This is equivalent to the Python expressionitems() .

PyObject* PyMapping _GetltemString (PyObject *o, char *key
Return valueNew reference
Return element o corresponding to the objekeyor NULLon failure. This is the equivalent of the Python
expressiond[key .

int PyMapping _SetltemString (PyObject *o, char *key, PyObject jv
Map the objeckeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python

statementd[key] = V.

6.4. Mapping Protocol 37

6.5 Iterator Protocol

New in version 2.2.
There are only a couple of functions specifically for working with iterators.

int Pylter _Check(PyObject *g
Return true if the objeab supports the iterator protocol.

PyObject* Pylter _Next (PyObject *g
Return valueNew reference
Return the next value from the iteration If the object is an iterator, this retrieves the next value from the
iteration, and return8lULL with no exception set if there are no remaining items. If the object is not an
iterator, TypeError is raised, or if there is an error in retrieving the item, retudti_L and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_Getlter(obj);
PyObject *item;

if (iterator == NULL) {
[* propagate error */

}

while (item = Pylter_Next(iterator)) {
/* do something with item */

/* release reference when done */
Py_DECREF(item);
}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject _AsCharBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location useable as character- based inmltj argament must
support the single-segment character buffer interface. On success, @tsasbuffer to the memory
location andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version
1.6.

int PyObject _AsReadBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location containing arbitrary dataobjlaegument must support
the single-segment readable buffer interface. On success, rétusatsbufferto the memory location and
buffer_lento the buffer length. Returnd and sets dypeError on error. New in version 1.6.

int PyObject _CheckReadBuffer (PyObject*q
Returnsl if o supports the single-segment readable buffer interface. Otherwise rétumdsw in version
2.2.

int PyObject _AsWriteBuffer (PyObject *obj, char **buffer, int *buffer len)
Returns a pointer to a writeable memory location. T argument must support the single-segment,

38 Chapter 6. Abstract Objects Layer

character buffer interface. On success, ret@rnsetsbufferto the memory location anbuffer_len to the
buffer length. Returnsl and sets &ypeError on error. New in version 1.6.

6.6. Buffer Protocol 39

40

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type
is not a good idea; if you receive an object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a dictionaByDg# _Check() .

The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check f&MULL being passed instead of a valid object. AllowiNYLLto be passed in
can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dijeet.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType _Type
This is the type object for type objects; it is the same objetypess. TypeType in the Python layer.

int PyType _Check (PyObject *9
Returns true if the objeat is a type object, including instances of types derived from the standard type
object. Returns false in all other cases.

int PyType _CheckExact (PyObject*9
Returns true if the objed is a type object, but not a subtype of the standard type object. Returns false in
all other cases. New in version 2.2.

int PyType _HasFeature (PyObject *o, int featurg
Returns true if the type objeotsets the featurkeature Type features are denoted by single bit flags.

int PyType _IS _G(PyObject *9
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS HAVE_GC New in version 2.0.

int PyType _IsSubtype (PyTypeObject *a, PyTypeObject)b
Returns true ifris a subtype ob. New in version 2.2.

PyObject* PyType _GenericAlloc (PyTypeObject *type, int nites
Return valueNew reference
New in version 2.2.

PyObject* PyType _GenericNew (PyTypeObject *type, PyObject *args, PyObject *kjvds
Return valueNew reference
New in version 2.2.

41

int PyType _Ready(PyTypeObject *type
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. R&umsuccess, or return$ and sets
an exception on error. New in version 2.2.

7.1.2 The None Object

Note that théPyTypeObject for None is not directly exposed in the Python/C API. Siridene is a singleton,
testing for object identity (using==" in C) is sufficient. There is n&®®yNone _Check() function for the same
reason.

PyObject* Py_None
The PythorNone object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance oPyTypeObject represents the Python plain integer type. This is the same object as
types.IntType

int PyIint _Check(PyObject* 9
Returns true ib is of typePyInt _Type or a subtype oPyIint _Type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyIint _CheckExact (PyObject* g
Returns true ibis of typePyInt _Type, but not a subtype d?Pyint _Type. New in version 2.2.

PyObject* PyInt _FromsString (char *str, char **pend, int basg
Return a newPyIntObject or PyLongObject based on the string value sir, which is interpreted
according to the radix ifase If pendis nonNULL, * pendwill point to the first character istr which
follows the representation of the number.bHseis 0, the radix will be determined based on the leading
characters oftr: if str starts with'Ox’ or’0X’ , radix 16 will be used; iktr starts with'0’ , radix 8 will
be used; otherwise radix 10 will be usedbHseis not0, it must be betweel and36, inclusive. Leading
spaces are ignored. If there are no digifalueError will be raised. If the string represents a number too
large to be contained within the machinsg int type and overflow warnings are being suppressed, a
PyLongObject will be returned. If overflow warnings are not being suppresbidl, L will be returned
in this case.

PyObject* PyIint _FromLong (long ival)
Return valueNew reference
Creates a new integer object with a valueval.

The current implementation keeps an array of integer objects for all integers betivessrd 100, when
you create an int in that range you actually just get back a reference to the existing object. So it should be
possible to change the value bf | suspect the behaviour of Python in this case is undefined. :-)

long Pyint _AsLong (PyObject *ig

Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.
long PyInt _AS_LONG PyObiject *ig

Returns the value of the objeict No error checking is performed.
unsigned long Pyint _AsUnsignedLongMask (PyObject *ig

Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long. This function does not check for overflow. New in version 2.3.

42 Chapter 7. Concrete Objects Layer

unsigned long PyInt _AsUnsignedLongLongMask (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long long, without checking for overflow. New in version 2.3.

long PyInt _GetMax()
Returns the system’s idea of the largest integer it can hah@&lG MAX as defined in the system header
files).

7.2.2 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong _Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object as
types.LongType

int PyLong _Check (PyObject *p
Returns true if its argument isRyLongObject or a subtype oPyLongObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyLong _CheckExact (PyObject*p
Returns true if its argument isRyLongObject , but not a subtype d?yLongObject . New in version
2.2.

PyObject* PyLong _FromLong (long V)
Return valueNew reference
Returns a neWwPyLongObject object fromv, or NULL on failure.

PyObject* PyLong _FromUnsignedLong (unsigned long)
Return valueNew reference
Returns a neWwPyLongObject object from a Qunsigned long , or NULLon failure.

PyObject* PyLong _FromLongLong (long long V)
Return valueNew reference
Returns a newyLongObject object from a dong long , or NULLon failure.

PyObject* PyLong _FromUnsignedLongLong (unsigned long long)v
Return valueNNew reference
Returns a neWwyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong _FromDouble (double y
Return valueNew reference
Returns a neWwPyLongObject object from the integer part of or NULL on failure.

PyObject* PyLong _FromString (char *str, char **pend, int basg
Return valueNew reference
Return a newPyLongObject based on the string value &tr, which is interpreted according to the radix
in base If pendis nonNULL, * pendwill point to the first character istr which follows the representation
of the number. Ibaseis 0, the radix will be determined based on the leading charactess:df str starts
with ’0x” or’0X’ , radix 16 will be used; iktr starts with'O’ , radix 8 will be used; otherwise radix 10
will be used. Ifbaseis not0, it must be betweeB and36, inclusive. Leading spaces are ignored. If there
are no digitsValueError will be raised.

PyObject* PyLong _FromUnicode (Py_UNICODE *u, int length, int base
Return valueNew reference
Convert a sequence of Unicode digits to a Python long integer value. The first paramptents to the
first character of the Unicode stringpngthgives the number of characters, dpaseis the radix for the
conversion. The radix must be in the range [2, 36]; if it is out of raMgdeError will be raised. New
in version 1.6.

PyObject* PyLong _FromVoidPtr (void *p)

Return valueNew reference
Create a Python integer or long integer from the poipteThe pointer value can be retrieved from the

7.2. Numeric Objects 43

resulting value usin@yLong _AsVoidPtr() . New in version 1.5.2.

long PyLong _AsLong (PyObiject *pylong
Returns a dong representation of the contents pflong If pylongis greater tharLONGMAX an
OverflowError is raised.

unsigned long PyLong _AsUnsignedLong (PyObject *pylong
Returns a Cunsigned long representation of the contents pflong If pylongis greater than
ULONGMAX anOverflowError is raised.

long long PyLong _AsLongLong (PyObject *pylong
Returna dong long from a Python long integer. [fylongcannot be represented albag long , an
OverflowError will be raised. New in version 2.2.

unsigned long long PyLong _AsUnsignedLongLong (PyObject *pylong
Return a Cunsigned long long from a Python long integer. Ibylongcannot be represented as an
unsigned long long , anOverflowError will be raised if the value is positive, orgpeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong _AsUnsignedLongMask (PyObject *ig
Return a Qunsigned long from a Python long integer, without checking for overflow. New in version
2.3.

unsigned long PyLong _AsUnsignedLongLongMask (PyObject *ig
Return a Qunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong _AsDouble (PyObject *pylong
Returns a Glouble representation of the contentsmflong If pylongcannot be approximately repre-
sented as double , anOverflowError exception is raised and..0 will be returned.

void* PyLong _AsVoidPtr (PyObject *pylong
Convert a Python integer or long integaeylongto a Cvoid pointer. If pylongcannot be converted, an
OverflowError will be raised. This is only assured to produce a usabid pointer for values created
with PyLong _FromVoidPtr() . New inversion 1.5.2.

7.2.3 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat _Type
This instance oPyTypeObject represents the Python floating point type. This is the same object as
types.FloatType

int PyFloat _Check(PyObject *p
Returns true if its argument isRyFloatObject or a subtype oPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat _CheckExact (PyObject*p
Returns true if its argument is RyFloatObject , but not a subtype oPyFloatObject . New in
version 2.2.

PyObject* PyFloat _FromString (PyObject *str, char **pen{l
Creates ®yFloatObject object based on the string valuesin, orNULLon failure. Thependargument
is ignored. It remains only for backward compatibility.

PyObject* PyFloat _FromDouble (doubley
Return valueNNew reference
Creates @yFloatObject object fromv, or NULL on failure.

double PyFloat _AsDouble (PyObject *pyfloat
Returns a Qlouble representation of the contentsmffloat

double PyFloat _AS_DOUBLIEPyObject *pyfloa}

44 Chapter 7. Concrete Objects Layer

Returns a Qlouble representation of the contentsmffloat but without error checking.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex
number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as redwtsalaeather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Pycomplex righ}
Return the sum of two complex numbers, using theyC complex representation.

Py_complex _Py_c_diff (Py_complex left, Pycomplex right
Return the difference between two complex numbers, using thg_ @omplex representation.

Py_complex _Py_c_neg(Py_complex complgx
Return the negation of the complex numbemplexusing the GPy_complex representation.

Py_complex _Py_c_prod (Py_complex left, Pycomplex right
Return the product of two complex numbers, using tieyCcomplex representation.

Py_complex _Py_c_quot (Py_complex dividend, Pycomplex divisor
Return the quotient of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_pow(Py_complex num, Pycomplex exp
Return the exponentiation alimby exp using the GPy_complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check (PyObject *p
Returns true if its argument isRyComplexObject or a subtype oPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex _CheckExact (PyObject*p
Returns true if its argument isRyComplexObject , but not a subtype dPyComplexObject . New
in version 2.2.

PyObject* PyComplex _FromCComplex (Py_complex ¥
Return valueNew reference
Create a new Python complex number object fromRyCcomplex value.

7.2. Numeric Objects 45

PyObject* PyComplex _FromDoubles (double real, double imgg
Return valueNNew reference
Returns a newPyComplexObject object fromreal andimag

double PyComplex _RealAsDouble (PyObject *op
Returns the real part afp as a Cdouble .

double PyComplex _ImagAsDouble (PyObiject *op
Returns the imaginary part op as a Cdouble .

Py_complex PyComplex _AsCComplex (PyObject *op)
Returns th’y_complex value of the complex numbeip.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 String Objects

These functions raisBypeError when expecting a string parameter and are called with a non-string parameter.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString _Type
This instance ofPyTypeObject represents the Python string type; it is the same object as
types.TypeType inthe Python layer. .

int PyString _Check(PyObject *q
Returns true if the objeat is a string object or an instance of a subtype of the string type. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyString _CheckExact (PyObject*g
Returns true if the objea is a string object, but not an instance of a subtype of the string type. New in
version 2.2.

PyObject* PyString _FromString (constchar*y
Return valueNew reference
Returns a new string object with the valen success, andULL on failure. The parametermust not be
NULL; it will not be checked.

PyObject* PyString _FromStringAndSize (const char *v, int lef
Return valueNew reference
Returns a new string object with the valuand lengthHen on success, andULL on failure. Ifvis NULL,
the contents of the string are uninitialized.

PyObject* PyString _FromFormat (const char *format, .).
Return valueNew reference
Takes a Qprintf() -style format string and a variable number of arguments, calculates the size of the
resulting Python string and returns a string with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format charactersfwrthatstring. The following format
characters are allowed:

46 Chapter 7. Concrete Objects Layer

Format Characters | Type | Comment

%% n/a The literal % character.

%cC int A single character, represented as an C int.

%d int Exactly equivalent t@rintf("%d")

%Id long | Exactly equivalent trintf("%ld")

%i int Exactly equivalent tgrintf("%i")

%X int Exactly equivalent tgrintf("%x")

%s char* | A null-terminated C character array.

%p void* | The hex representation of a C pointer. Mostly equivalemiriotf("%p™) except that

PyObject* PyString _FromFormatV (const char *format, valist varg9
Return valueNew reference
Identical toPyString _FromFormat() except that it takes exactly two arguments.

int PyString _Size (PyObject *string
Returns the length of the string in string objsting.

int PyString _GET_SIZE (PyObject *string
Macro form ofPyString _Size() but without error checking.

char* PyString _AsString (PyObject *string
Returns a NUL-terminated representation of the contenssriofy. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString _FromStringAndSize(NULL, sizg . It must not be deallocated. #$tringis a Unicode
object, this function computes the default encodingtoing and operates on that. $tringis not a string
object at all PyString _AsString() returnsNULL and raiseSypeError

char* PyString _AS_STRING PyObject *string
Macro form of PyString _AsString() but without error checking. Only string objects are supported;
no Unicode objects should be passed.

int PyString _AsStringAndSize (PyObject *obj, char **buffer, int *length
Returns a NUL-terminated representation of the contents of the oblpgd¢hrough the output variables
bufferandlength

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default
encoded version of the object.l&éngthis NULL, the resulting buffer may not contain NUL characters; if it
does, the function returnd@ and aTypeError is raised.

The buffer refers to an internal string bufferaj, not a copy. The data must not be modified in any way,
unless the string was just created usihy@string _FromStringAndSize(NULL, Sizg . It must not

be deallocated. I§tring is a Unicode object, this function computes the default encodingtrofg and
operates on that. Htringis not a string object at alRyString _AsString() returnsNULL and raises
TypeError

void PyString _Concat (PyObject **string, PyObject *newpayt
Creates a new string objectatring containing the contents olewpartappended tatring; the caller will
own the new reference. The reference to the old valusrafg will be stolen. If the new string cannot be
created, the old reference s$tring will still be discarded and the value &$tring will be set toNULL; the
appropriate exception will be set.

void PyString _ConcatAndDel (PyObject **string, PyObject *newpa)t
Creates a new string object fstring containing the contents efewpartappended tstring. This version
decrements the reference counnefvpart

int _PyString _Resize (PyObiject **string, int newsize
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object
as an lvalue (it may be written into), and the new size desired. On suéstssy holds the resized string
object and is returned; the address fatring may differ from its input value. If the reallocation fails, the
original string object atstring is deallocatedtstring is set toNULL, a memory exception is set, antl is
returned.

7.3. Sequence Objects 47

PyObject* PyString _Format (PyObject *format, PyObject *args
Return valueNew reference
Returns a new string object froformatandargs Analogous tdormat % args Theargsargument must
be a tuple.

void PyString _lInterninPlace (PyObject **string
Intern the argumentstring in place. The argument must be the address of a pointer variable pointing to
a Python string object. If there is an existing interned string that is the sarrstriag, it sets*string to
it (decrementing the reference count of the old string object and incrementing the reference count of the
interned string object), otherwise it leavestring alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-
count-neutral; you own the object after the call if and only if you owned it before the call.)

PyObject* PyString _InternFromsString (const char *y
Return valueNew reference
A combination ofPyString _FromString() andPyString _InterninPlace() , returning either
a new string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

PyObject* PyString _Decode (const char *s, int size, const char *encoding, const char *eryors
Return valueNew reference
Creates an object by decodisgebytes of the encoded buffsrusing the codec registered fencoding
encodinganderrors have the same meaning as the parameters of the same namanictbde() built-in
function. The codec to be used is looked up using the Python codec registry. Rétlirh# an exception
was raised by the codec.

PyObject* PyString _AsDecodedObject (PyObject *str, const char *encoding, const char *errprs
Return valueNNew reference
Decodes a string object by passing it to the codec registereshfrdingand returns the result as Python
object. encodingand errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Rétliring
an exception was raised by the codec.

PyObject* PyString _Encode (const char *s, int size, const char *encoding, const char *eryors
Return valueNew reference
Encodes thehar buffer of the given size by passing it to the codec registereérieodingand returns a
Python objectencodinganderrors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Rétling
an exception was raised by the codec.

PyObject* PyString _AsEncodedObject (PyObject *str, const char *encoding, const char *errprs
Return valueNNew reference
Encodes a string object using the codec registereaghondingand returns the result as Python object.
encodinganderrors have the same meaning as the parameters of the same name in therstodg()
method. The codec to be used is looked up using the Python codec registry. Rétling an exception
was raised by the codec.

7.3.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis for holding
Unicode ordinals. On platforms whevechar _t is available and also has 16-biBy_UNICODEis a
typedef alias fowvchar _t to enhance native platform compatibility. On all other platfor®ys, UNICODE
is a typedef alias founsigned short

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode _Type
This instance oPyTypeObject represents the Python Unicode type.

48 Chapter 7. Concrete Objects Layer

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode _Check(PyObject*g
Returns true if the objeat is a Unicode object or an instance of a Unicode subtype. Changed in version
2.2: Allowed subtypes to be accepted.

int PyUnicode _CheckExact (PyObject*q
Returns true if the objedatis a Unicode object, but not an instance of a subtype. New in version 2.2.

int PyUnicode _GET_SIZE (PyObject *g
Returns the size of the objecthas to be @yUnicodeObject (not checked).

int PyUnicode _GET_DATA_SIZE (PyObject *9
Returns the size of the object’s internal buffer in bytehas to be #yUnicodeObject (not checked).

Py_UNICODE* PyUnicode _AS_UNICODE PyObject *9
Returns a pointer to the internBly _UNICODEbuffer of the object.o has to be @#yUnicodeObject
(not checked).

const char* PyUnicode _AS_DATA PyObject *g
Returns a pointer to the internal buffer of the objechas to be @yUnicodeObject (not checked).

Unicode provides many different character properties. The most often needed ones are available through these
macros which are mapped to C functions depending on the Python configuration.

int Py_UNICODE.ISSPACE(Py_UNICODE ch
Returns 1/0 depending on whetlatris a whitespace character.

int Py_UNICODE.ISLOWER Py_UNICODE ch
Returns 1/0 depending on whetludris a lowercase character.

int Py_UNICODE.ISUPPER Py_UNICODE ch
Returns 1/0 depending on whetludris an uppercase character.

int Py_UNICODELISTITLE (Py_UNICODE ch
Returns 1/0 depending on whetlotris a titlecase character.

int Py_UNICODE.ISLINEBREAK(Py_UNICODE ch
Returns 1/0 depending on whetlatris a linebreak character.

int Py_UNICODE.ISDECIMAL(Py_UNICODE ch
Returns 1/0 depending on whetluris a decimal character.

int Py_UNICODE.ISDIGIT (Py_UNICODE ch
Returns 1/0 depending on whetlatris a digit character.

int Py_UNICODE.ISNUMERIQ Py_UNICODE ch
Returns 1/0 depending on whetleris a numeric character.

int Py_UNICODE.ISALPHA(Py_UNICODE ch
Returns 1/0 depending on whetlatris an alphabetic character.

int Py_UNICODE.ISALNUM Py_UNICODE ch
Returns 1/0 depending on whetladris an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE TOLOWERPY_UNICODE ch
Returns the characteh converted to lower case.

Py_UNICODE Py_UNICODE. TOUPPERPY_UNICODE ch
Returns the characteh converted to upper case.

Py_UNICODE Py_UNICODETOTITLE(Py_UNICODE ch
Returns the characteh converted to title case.

int Py_UNICODE.TODECIMAIK Py_UNICODE ch
Returns the characteh converted to a decimal positive integer. Retuhsf this is not possible. Does not
raise exceptions.

7.3. Sequence Objects 49

int Py_UNICODE.TODIGIT (Py_UNICODE ch
Returns the characteh converted to a single digit integer. Returdsif this is not possible. Does not raise
exceptions.

double Py_UNICODETONUMERICPYy_UNICODE ch
Returns the characteh converted to a (positive) double. ReturisO if this is not possible. Does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode _FromUnicode (const Py UNICODE *u, int sizg
Return valueNew reference
Create a Unicode Object from the RyNICODE bufferu of the given sizeu may beNULL which causes
the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into
the new object. If the buffer is n&tULL, the return value might be a shared object. Therefore, modification
of the resulting Unicode object is only allowed wheis NULL

Py_UNICODE* PyUnicode _AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s inteRyal UNICODEbuffer, NULLif unicodeis not a
Unicode object.

int PyUnicode _GetSize (PyObject *unicodg
Return the length of the Unicode object.

PyObject* PyUnicode _FromEncodedObject (PyObject *obj, const char *encoding, const char *er-

rors)
Return valueNew reference

Coerce an encoded objeathj to an Unicode object and return a reference with incremented refcount.
Coercion is done in the following way:

1.Unicode objects are passed back as-is with incremented refchotg: These cannot be decoded;
passing a noMNULLvalue for encoding will result in @ypeError

2.String and other char buffer compatible objects are decoded according to the given encoding and using
the error handling defined by errors. Both canNldLL to have the interface use the default values
(see the next section for details).

3.All other objects cause an exception.

The API returndNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode _FromObject (PyObject *ob)
Return valueNew reference
Shortcut for PyUnicode _FromEncodedObject(obj, NULL, "strict") which is used
throughout the interpreter whenever coercion to Unicode is needed.

If the platform supportsvchar _t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s ddsn UNICODRype is identical to the system’s
wchar _t .

PyObject* PyUnicode _FromWideChar (const wchart *w, int sizé
Return valueNew reference
Create a Unicode object from tichar _t bufferw of the given size. ReturrSULL on failure.

int PyUnicode _AsWideChar (PyUnicodeObject *unicode, wchat *w, int sizg
Copies the Unicode object contents into thehar _t buffer w. At mostsizewchar _t characters are
copied. Returns the numberwthar _t characters copied or -1 in case of an error.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable
via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have
the same semantics as the ones of the builtin unicode() Unicode object constructor.

50 Chapter 7. Concrete Objects Layer

Setting encoding t&NULL causes the default encoding to be used whichsisil. The file system calls should
usePy _FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as
read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time, e.g. when
the application invokes setlocale.

Error handling is set by errors which may also be sé\iti L meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “stric¢alueError s raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for sim-
plicity.
These are the generic codec APIs:

PyObject* PyUnicode _Decode (const char *s, int size, const char *encoding, const char *efyors
Return valueNew reference
Create a Unicode object by decodisigebytes of the encoded striregencodinganderrors have the same
meaning as the parameters of the same name iartteede() builtin function. The codec to be used is
looked up using the Python codec registry. Retihi L if an exception was raised by the codec.

PyObject* PyUnicode _Encode (const Py UNICODE *s, int size, const char *encoding, const char *er-

rors)
Return valueNew reference

Encodes th®y_UNICODHBbuffer of the given size and returns a Python string objeistodinganderrors
have the same meaning as the parameters of the same name in the énicode() method. The codec
to be used is looked up using the Python codec registry. ReNithd if an exception was raised by the
codec.

PyObject* PyUnicode _AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return valueNew reference

Encodes a Unicode object and returns the result as Python string asjeotlinganderrors have the same
meaning as the parameters of the same name in the Unigubele() method. The codec to be used is
looked up using the Python codec registry. Retihi Lif an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode _DecodeUTF8(const char *s, int size, const char *errgrs
Return valueNNew reference
Creates a Unicode object by decodisige bytes of the UTF-8 encoded strirgy ReturnsNULL if an
exception was raised by the codec.

PyObject* PyUnicode _EncodeUTF8(const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th®y_UNICODBbuffer of the given size using UTF-8 and returns a Python string object. Returns
NULL f an exception was raised by the codec.

PyObject* PyUnicode _AsUTF8String (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are the UTF-16 codec APIs:

PyObject* PyUnicode _DecodeUTF16(const char *s, int size, const char *errors, int *byteordler
Return valueNNew reference
Decodedengthbytes from a UTF-16 encoded buffer string and returns the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1. big endian

and then switches according to all byte order marks (BOM) it finds in the input data. BOMs are not copied
into the resulting Unicode string. After completicibyteorderis set to the current byte order at the end of
input data.

7.3. Sequence Objects 51

If byteorderis NULL, the codec starts in native order mode.
ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode _EncodeUTF16 (const Py UNICODE *s, int size, const char *errors, int byte-

order)
Return valueNew reference

Returns a Python string object holding the UTF-16 encoded value of the Unicode daié lnyteorderis
not 0, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

Note thatPy _UNICODHlata is being interpreted as UTF-16 reduced to UCS-2. This trick makes it possible
to add full UTF-16 capabilities at a later point without comprimising the APIs.

ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode _AsUTF16String (PyObject *unicodg
Return valueNew reference
Returns a Python string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. ReturndULL if an exception was raised by the codec.

These are the “Unicode Esacpe” codec APIs:

PyObject* PyUnicode _DecodeUnicodeEscape (constchar *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the Unicode-Escape encoded stengeturnsNULL if
an exception was raised by the codec.

PyObject* PyUnicode _EncodeUnicodeEscape (const Py UNICODE *s, int size, const char *erroys
Return valueNNew reference
Encodes thé?y _UNICODEbuffer of the given size using Unicode-Escape and returns a Python string
object. Return®lULL if an exception was raised by the codec.

PyObject* PyUnicode _AsUnicodeEscapeString (PyObject *unicodg
Return valueNNew reference
Encodes a Unicode objects using Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. Return&NULL if an exception was raised by the codec.

These are the “Raw Unicode Esacpe” codec APIs:

PyObject* PyUnicode _DecodeRawUnicodeEscape (const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodisigebytes of the Raw-Unicode-Esacpe encoded stsingreturns
NULL if an exception was raised by the codec.

PyObject* PyUnicode _EncodeRawUnicodeEscape (const Py UNICODE *s, int size, const char *er-

rors)
Return valueNew reference

Encodes th@y_UNICODEbuffer of the given size using Raw-Unicode-Escape and returns a Python string
object. Return®lULL if an exception was raised by the codec.

PyObject* PyUnicode _AsRawUnicodeEscapeString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. Return&NULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject* PyUnicode _DecodelLatinl (constchar *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodisige bytes of the Latin-1 encoded strirggy ReturnsNULL if an

52 Chapter 7. Concrete Objects Layer

exception was raised by the codec.

PyObject* PyUnicode _Encodelatinl (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th®y_UNICODHBbuffer of the given size using Latin-1 and returns a Python string object. Returns
NULL f an exception was raised by the codec.

PyObject* PyUnicode _AsLatinlString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Latin-1 and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are thascii codec APIs. Only 7-binscii data is accepted. All other codes generate errors.

PyObject* PyUnicode _DecodeASCIl (const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of theascil encoded string. ReturndNULLIf an exception
was raised by the codec.

PyObject* PyUnicode _EncodeASCIl (const Py UNICODE *s, int size, const char *erroys
Return valueNNew reference
Encodes th®y_UNICODHBbuffer of the given size usingscli and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode _AsASCIIString (PyObject *unicod®
Return valueNNew reference
Encodes a Unicode objects usiagcll and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included inetheodings package). The codec uses mapping to encode
and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning "undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning "undefined mapping” and causing an error).

The mapping objects provided must only support th@getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings
which map characters to different code points.

PyObject* PyUnicode _DecodeCharmap (const char *s, int size, PyObject *mapping, const char *er-

rors)
Return valueNew reference

Creates a Unicode object by decodisigebytes of the encoded strirgusing the givermappingobject.
ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode _EncodeCharmap (const Py UNICODE *s, int size, PyObject *mapping, const

char *errors)
Return valueNew reference

Encodes th&y_UNICODEbuffer of the given size using the givenappingobject and returns a Python
string object. ReturnSIULL if an exception was raised by the codec.

PyObject* PyUnicode _AsCharmapString (PyObject *unicode, PyObject *mapping
Return valueNew reference

Encodes a Unicode objects using the giveappingobject and returns the result as Python string object.
Error handling is “strict”. ReturnBIULL if an exception was raised by the codec.

The following codec APl is special in that maps Unicode to Unicode.

PyObject* PyUnicode _TranslateCharmap (const Py UNICODE *s, int size, PyObject *table, const
char *errors)

7.3. Sequence Objects 53

Return valueNew reference
Translates #y_UNICODBouffer of the given length by applying a character mappiigeto it and returns
the resulting Unicode object. ReturN&JLLwhen an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the methadetitem__() interface; dictionaries and sequences work
well. Unmapped character ordinals (ones which caussokupError) are left untouched and are copied
as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The
target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode _DecodeMBCS const char *s, int size, const char *errgrs
Return valueNNew reference
Creates a Unicode object by decodisige bytes of the MBCS encoded strirgg ReturnsNULL if an
exception was raised by the codec.

PyObject* PyUnicode _EncodeMBCS const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th®y_UNICODBbuffer of the given size using MBCS and returns a Python string object. Returns
NULL f an exception was raised by the codec.

PyObject* PyUnicode _AsMBCSString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using MBCS and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in
the descriptions) and return Unicode objects or integers as apporpriate.

They all returrNULLor -1 if an exception occurs.

PyObject* PyUnicode _Concat (PyObiject *left, PyObject *right
Return valueNew reference
Concat two strings giving a new Unicode string.

PyObject* PyUnicode _Split (PyObject*s, PyObject *sep, int maxsplit
Return valueNew reference
Split a string giving a list of Unicode strings. If sep MULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At massplitsplits will be done. If negative,
no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode _Splitlines (PyObject *s, int keepend
Return valueNew reference
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeepends 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode _Translate (PyObject *str, PyObject *table, const char *errgrs
Return valueNNew reference
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem __() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeokupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayN#l_L which indicates to use the default error handling.

PyObject* PyUnicode _Join (PyObject *separator, PyObject *sgq
Return valueNew reference

54 Chapter 7. Concrete Objects Layer

Join a sequence of strings using the given separator and return the resulting Unicode string.

PyObject* PyUnicode _Tailmatch (PyObiject *str, PyObject *substr, int start, int end, int directjon
Return valueNNew reference
Return 1 ifsubstrmatchesstr[startend at the given tail enddirection== -1 means to do a prefix match,
direction== 1 a suffix match), 0 otherwise.

int PyUnicode _Find (PyObject *str, PyObject *substr, int start, int end, int directjon
Return the first position asubstrin str[startend using the giverdirection (direction== 1 means to do a
forward searchdirection== -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, a@dindicates that an error occurred and an exception has been
set.

int PyUnicode _Count (PyObject *str, PyObject *substr, int start, int end
Return the number of non-overlapping occurrencesuddfstrin str[start end . Returns-1 if an error
occurred.

PyObject* PyUnicode _Replace (PyObiject *str, PyObject *substr, PyObject *replstr, int maxcgunt
Return valueNew reference
Replace at moshaxcounbccurrences adubstrin str with replstr and return the resulting Unicode object.
maxcount= -1 means replace all occurrences.

int PyUnicode _Compare(PyObiject *left, PyObject *right
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

PyObject* PyUnicode _Format (PyObject *format, PyObject *args
Return valueNew reference
Returns a new string object frofarmatandargs this is analogous téormat % args Theargsargument
must be a tuple.

int PyUnicode _Contains (PyObject *container, PyObject *elemént
Checks whetheglemenis contained ircontainerand returns true or false accordingly.

elemenhas to coerce to a one element Unicode striigis returned if there was an error.

7.3.3 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer
interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the
character contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should
be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file objegtiste() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg _ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (section 10.7), under
the description foPyBufferProcs

A “buffer object” is defined in thedufferobject.h’ header (included byPython.h"). These objects look very similar

to string objects at the Python programming level: they support slicing, indexing, concatenation, and some other
standard string operations. However, their data can come from one of two sources: from a block of memory, or
from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python program-
mer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before passing to an operating system

library, or it could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

7.3. Sequence Objects 55

PyTypeObject PyBuffer _Type
The instance ofPyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py_END OF_BUFFER
This constant may be passed as tlgize parameter to PyBuffer _FromObject() or
PyBuffer _FromReadWriteObject() . It indicates that the newPyBufferObject should
refer tobaseobject from the specifiedffsetto the end of its exported buffer. Using this enables the caller
to avoid querying théaseobject for its length.

int PyBuffer _Check(PyObject*p
Return true if the argument has typgBuffer _Type.

PyObject* PyBuffer _FromObject (PyObiject *base, int offset, int sige
Return valueNew reference
Return a new read-only buffer object. This rai3gpeError if basedoesn’t support the read-only buffer
protocol or doesn'’t provide exactly one buffer segment, or it raidgeError i offsetis less than zero.
The buffer will hold a reference to tHeaseobject, and the buffer's contents will refer to thaseobject’s
buffer interface, starting as positiaffsetand extending fosizebytes. Ifsizeis Py_END OF_BUFFER
then the new buffer's contents extend to the length obtseobject’s exported buffer data.

PyObject* PyBuffer _FromReadWriteObject (PyObject *base, int offset, int sige
Return valueNew reference
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer _FromObject() . If the baseobject does not export the writeable buffer protocol, then
TypeError s raised.

PyObject* PyBuffer _FromMemory(void *ptr, int sizg
Return valueNew reference
Return a new read-only buffer object that reads from a specified location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passegin a&snot deallocated while the re-
turned buffer object exists. Rais€alueError if sizeis less than zero. Note thBy_END OF_BUFFER
maynotbe passed for theizeparameteryalueError will be raised in that case.

PyObject* PyBuffer _FromReadWriteMemory (void *ptr, int sizg

Return valueNew reference

Similar toPyBuffer _FromMemory() , but the returned buffer is writable.
PyObject* PyBuffer _New(int sizg

Return valueNew reference

Returns a new writable buffer object that maintains its own memory buffsizebytes.ValueError is
returned ifsizeis not zero or positive.

7.3.4 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple _Type
This instance ofPyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple _Check(PyObject*p
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyTuple _CheckExact (PyObject*p

Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.
PyObject* PyTuple _New intlen)

Return valueNew reference

Return a new tuple object of siten, or NULL on failure.

int PyTuple _Size (PyObject *p

56 Chapter 7. Concrete Objects Layer

Takes a pointer to a tuple object, and returns the size of that tuple.

int PyTuple _GET_SIZE (PyObject *p
Return the size of the tupfe which must be notNULLand point to a tuple; no error checking is performed.

PyObject* PyTuple _Getltem (PyObject *p, int poy
Return valueBorrowed reference
Returns the object at positiggosin the tuple pointed to by. If posis out of bounds, returnsULL and
sets arindexError exception.

PyObject* PyTuple _GET_ITEM(PyObiject *p, int po¥
Return value Borrowed reference
Like PyTuple _Getltem() , but does no checking of its arguments.

PyObject* PyTuple _GetSlice (PyObiject *p, intlow, int high
Return valueNew reference
Takes a slice of the tuple pointed to pyrom low to highand returns it as a new tuple.

int PyTuple _Setltem (PyObject *p, int pos, PyObject jo
Inserts a reference to objestat positionposof the tuple pointed to by. It returnsO on successNote:
This function “steals” a reference o

void PyTuple _SET_ITEM(PyObiject *p, int pos, PyObject jo
Like PyTuple _Setltem() , but does no error checking, and shooldy be used to fill in brand new
tuples.Note: This function “steals” a reference to

int _PyTuple _Resize (PyObject **p, int newsize
Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplessamgposedo
be immutable, this should only be used if there is only one reference to the objectotDse this if the
tuple may already be known to some other part of the code. The tuple will always grow or shrink at the
end. Think of this as destroying the old tuple and creating a new one, only more efficiently. Retuins
success. Client code should never assume that the resulting valpendli be the same as before calling
this function. If the object referenced By is replaced, the origindlp is destroyed. On failure, return$
and setg p to NULL, and raisedMemoryError or SystemError . Changed in version 2.2: Removed
unused third parametdgst_is_sticky

7.3.5 List Objects

PyListObject
This subtype oPyObject represents a Python list object.
PyTypeObject PyList _Type
This instance ofPyTypeObject represents the Python list type. This is the same object as
types.ListType
int PyList _Check(PyObject *p
Returns true if its argument isRyListObject
PyObject* PyList _New(intlen)
Return valueNew reference
Returns a new list of lengtlen on success, ddULL on failure.

int PyList _Size (PyObiject *lis)

Returns the length of the list objectlist; this is equivalent tolen(list) ’ on a list object.
int PyList _GET_SIZE (PyObject *lis}

Macro form ofPyList _Size() without error checking.
PyObject* PyList _Getltem (PyObiject *list, int indeX

Return value Borrowed reference

Returns the object at positigrosin the list pointed to byp. If posis out of bounds, returndULL and sets
anindexError exception.

PyObject* PyList _GET_ITEM(PyObject *list, int)
Return valueBorrowed reference

7.3. Sequence Objects 57

Macro form ofPyList _Getltem() without error checking.

int PyList _Setltem (PyObiject *list, intindex, PyObject *itejn
Sets the item at indekdexin list to item ReturnsO on success ol on failure. Note: This function
“steals” a reference tilemand discards a reference to an item already in the list at the affected position.

void PyList _SET_ITEM(PyObject *list, int i, PyObject *»
Macro form of PyList _Setltem() without error checking. This is normally only used to fill in new
lists where there is no previous conterlflote: This function “steals” a reference item and, unlike
PyList _Setltem() ,doesnotdiscard a reference to any item that it being replaced; any referetise in
at positioni will be leaked.

int PyList _Insert (PyObject *list, intindex, PyObject *iten
Inserts the iteniteminto list list in front of indexindex ReturnsD if successful; returnsl and raises an
exception if unsuccessful. Analogousligt.insert(index item).

int PyList _Append (PyObject *list, PyObject *item
Appends the objedtemat the end of listist. Returns0 if successful; returnsl and sets an exception if
unsuccessful. Analogous list.append(item) .

PyObject* PyList _GetSlice (PyObject *list, int low, int high
Return valueNew reference
Returns a list of the objects list containing the objectsetween lovandhigh. ReturnsNULL and sets an
exception if unsuccessful. Analogousligt[low: high] .

int PyList _SetSlice (PyObject *list, int low, int high, PyObject *itemlist
Sets the slice ofist betweenlow and high to the contents oftemlist Analogous tdlist[low: high] =
itemlist Returnsd on success;l on failure.

int PyList _Sort (PyObject *lis}
Sorts the items dist in place. Return® on success,l on failure. This is equivalent tdist.sort()

int PyList _Reverse (PyObject *lis)
Reverses the items dist in place. Return® on success;1 on failure. This is the equivalent of
‘list.reverse() '
PyObject* PyList _AsTuple (PyObject *lis}
Return valueNew reference
Returns a new tuple object containing the contentssafequivalent totuple(list) .

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.
PyTypeObject PyDict _Type
This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python pro-
grams agypes.DictType andtypes.DictionaryType
int PyDict _Check (PyObject *p
Returns true if its argument isRyDictObject
PyObject* PyDict _New()
Return valueNew reference
Returns a new empty dictionary, NJLL on failure.
PyObject* PyDictProxy _New(PyObject *dic)
Return valueNew reference

Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a
proxy to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict _Clear (PyObject*p

58 Chapter 7. Concrete Objects Layer

Empties an existing dictionary of all key-value pairs.

PyObject* PyDict _Copy(PyObject *p
Return valueNNew reference
Returns a new dictionary that contains the same key-value pgixs Bgw in version 1.6.

int PyDict _Setltem (PyObject*p, PyObject *key, PyObject *yal
Insertsvalueinto the dictionaryp with a key ofkey. keymust be hashable; if it isn'TypeError will be
raised. Return® on success o1l on failure.

int PyDict _SetltemString (PyObject *p, char *key, PyObject *val
Insertsvalueinto the dictionaryp usingkeyas a key.keyshould be achar* . The key object is created
usingPyString _FromString(key) . ReturnsD on success ol on failure.

int PyDict _Delltem (PyObject*p, PyObject *key
Removes the entry in dictionagywith key key keymust be hashable; if it isn’fTypeError is raised.
ReturnsD on success o1l on failure.

int PyDict _DelltemString (PyObject *p, char *key
Removes the entry in dictionagwhich has a key specified by the strikgy Returnsd on success o1l
on failure.

PyObject* PyDict _Getltem (PyObject *p, PyObject *key
Return value Borrowed reference
Returns the object from dictionagywhich has a kekey ReturnsNULL if the keykeyis not present, but
withoutsetting an exception.

PyObject* PyDict _GetltemString (PyObject *p, char *key
Return value Borrowed reference
This is the same aByDict _Getltem() , butkeyis specified as ahar* , rather than &yObject*

PyObject* PyDict _Items (PyObject *p
Return valueNew reference
Returns aPyListObject containing all the items from the dictionary, as in the dictinoary method
items() (see theéPython Library Referenge

PyObject* PyDict _Keys (PyObject *p
Return valueNew reference
Returns @yListObject containing all the keys from the dictionary, as in the dictionary mekeys()
(see thePython Library Referenge

PyObject* PyDict _Values (PyObject*p
Return valueNNew reference
Returns aPyListObject containing all the values from the dictionapy as in the dictionary method
values() (see thePython Library Referenge

int PyDict _Size (PyObject*p
Returns the number of items in the dictionary. This is equivalerietd* p) ' on a dictionary.
int PyDict _Next (PyObject *p, int *ppos, PyObject **pkey, PyObject **pvalue
Iterate over all key-value pairs in the dictiongwy Theint referred to bypposmust be initialized to
0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The paramkéyendpvalueshould either point
to PyObject* variables that will be filled in with each key and value, respectively, or mayeL Any
references returned through them are borrowed.
For example:
PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of

7.4. Mapping Objects 59

the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {

int i = PyInt_AS_LONG(value) + 1,

PyObject *o = PyInt_FromLong(i);

if (0 == NULL)
return -1,

if (PyDict_Setltem(self->dict, key, 0) < 0) {
Py_DECREF(0);
return -1,

}
Py_DECREF(0);

}

int PyDict _Merge (PyObject *a, PyObject *b, int overrige
Iterate over mapping objettadding key-value pairs to dictionasy b may be a dictionary, or any object
supportingPyMapping _Keys() andPyObject _Getltem() . If overrideis true, existing pairs im
will be replaced if a matching key is found I otherwise pairs will only be added if there is not a matching
key ina. ReturnO on success ol if an exception was raised. New in version 2.2.

int PyDict _Update (PyObject *a, PyObject *p
This is the same &ByDict _Merge(a, b, 1) inC, ora.update(b) in Python. Retur® on success
or-1 if an exception was raised. New in version 2.2.

int PyDict _MergeFromSeq2 (PyObject *a, PyObject *seqz2, int overriyle
Update or merge into dictionagy from the key-value pairs iseq2 seq2must be an iterable object produc-
ing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the lasowersidfe
is true, else the first wins. Retufnon success oil if an exception was raised. Equivalent Python (except
for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

New in version 2.2.

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on fteE* support from the C standard library. This is
an implementation detail and may change in future releases of Python.

PyFileObject
This subtype oPyObject represents a Python file object.

PyTypeObject PyFile _Type
This instance oPyTypeObject represents the Python file type. This is exposed to Python programs as
types.FileType

int PyFile _Check(PyObject*p
Returns true if its argument isRyFileObject or a subtype oPyFileObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFile _CheckExact (PyObject*p

Returns true if its argument isRyFileObject , but not a subtype dPyFileObject . New in version
2.2.

60 Chapter 7. Concrete Objects Layer

PyObject* PyFile _FromString (char *filename, char *mode
Return valueNew reference
On success, returns a new file object that is opened on the file giviélelgme with a file mode given by
mode wheremodehas the same semantics as the standard C rdiofre®() . On failure, return&NULL

PyObject* PyFile _FromFile (FILE *fp, char *name, char *mode, int (*close)(FILEY)
Return valueNew reference
Creates a newyFileObject from the already-open standard C file poinfpr, The functionclosewiill
be called when the file should be closed. Ret\ikd L on failure.

FILE* PyFile _AsFile (PyFileObject*p
Returns the file object associated wjitls aFILE* .

PyObject* PyFile _GetLine (PyObject*p, intn)
Return valueNew reference
Equivalent top.readline([n]) , this function reads one line from the obj@ctp may be a file object or
any object with aeadline() method. Ifnis 0, exactly one line is read, regardless of the length of the
line. If nis greater tha®, no more tham bytes will be read from the file; a partial line can be returned.
In both cases, an empty string is returned if the end of the file is reached immediatalis IEss than
0, however, one line is read regardless of length,BOEError is raised if the end of the file is reached
immediately.

PyObject* PyFile _Namd PyObject *p
Return value Borrowed reference
Returns the name of the file specifiedpgs a string object.

void PyFile _SetBufSize (PyFileObject*p,intn)
Available on systems witlsetvbuf() only. This should only be called immediately after file object
creation.

int PyFile _Encoding (PyFileObject *p, char *eng
Set the file’s encoding for Unicode outputdnc Return 1 on success and 0 on failure. New in version 2.3.

int PyFile _SoftSpace (PyObject*p, int newflap
This function exists for internal use by the interpreter. Setstftspace attribute ofp to newflagand
returns the previous valu@.does not have to be a file object for this function to work properly; any object
is supported (thought its only interesting if theftspace attribute can be set). This function clears any
errors, and will retur® as the previous value if the attribute either does not exist or if there were errors in
retrieving it. There is no way to detect errors from this function, but doing so should not be needed.

int PyFile _WriteObject (PyObject *obj, PyFileObject *p, int flags
Writes objecbbj to file objectp. The only supported flag fdtagsis Py _PRINT_RAWif given, thestr()
of the object is written instead of threpr() . ReturnsO on success orl on failure; the appropriate
exception will be set.

int PyFile _WriteString (const char *s, PyFileObject *p
Writes strings to file objectp. ReturnsD on success ofl on failure; the appropriate exception will be set.

7.5.2 Instance Objects

There are very few functions specific to instance objects.

PyTypeObject Pylnstance _Type
Type object for class instances.

int Pylnstance _Check (PyObject *ob)
Returns true ibbj is an instance.

PyObject* Pylnstance _New(PyObiject *class, PyObject *arg, PyObject *kw
Return valueNNew reference
Create a new instance of a specific class. The paranstpesdkw are used as the positional and keyword
parameters to the object’s constructor.

7.5. Other Objects 61

PyObject* Pylnstance _NewRaw PyObject *class, PyObject *dift
Return valueNew reference
Create a new instance of a specific class without calling it's construckassis the class of new object.
Thedict parameter will be used as the object’'sdict __; if NULL, a new dictionary will be created for
the instance.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod _Type
This instance oPyTypeObject represents the Python method type. This is exposed to Python programs
astypes.MethodType

int PyMethod _Check (PyObject *q
Return true ifo is a method object (has tygg/Method _Type). The parameter must not bhiJLL

PyObject* PyMethod _New(PyObject *func. PyObject *self, PyObject *cl3ss
Return valueNNew reference
Return a new method object, withncbeing any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instaetfeshould be the instance awthss
should be the class sklf, otherwiseself should beNULL andclassshould be the class which provides the
unbound method..

PyObject* PyMethod _Class (PyObject *meth
Return value Borrowed reference
Return the class object from which the methudthwas created; if this was created from an instance, it
will be the class of the instance.

PyObject* PyMethod _GET_CLASY PyObject *meth
Return value Borrowed reference
Macro version oPyMethod _Class() which avoids error checking.

PyObject* PyMethod _Function (PyObject *meth
Return value Borrowed reference
Return the function object associated with the metimadh

PyObject* PyMethod _GET_FUNCTION PyObject *meth
Return value Borrowed reference
Macro version oPyMethod _Function() which avoids error checking.

PyObject* PyMethod _Self (PyObject *meth
Return valueBorrowed reference
Return the instance associated with the metimedthif it is bound, otherwise returNULL

PyObject* PyMethod _GET_SELF PyObject *meth
Return value Borrowed reference
Macro version oPyMethod _Self() which avoids error checking.

7.5.4 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule _Type
This instance oPyTypeObject represents the Python module type. This is exposed to Python programs
astypes.ModuleType

int PyModule _Check (PyObject *p
Returns true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyModule _CheckExact (PyObject*p
Returns true ip is a module object, but not a subtypeRyModule _Type. New in version 2.2.

62 Chapter 7. Concrete Objects Layer

PyObject* PyModule _New(char *name
Return valueNew reference
Return a new module object with the name__ attribute set tamame Only the module’s__doc __ and
__name__ attributes are filled in; the caller is responsible for providing dile __ attribute.

PyObject* PyModule _GetDict (PyObject *module
Return valueBorrowed reference
Return the dictionary object that implemenisdulés namespace; this object is the same as théict __
attribute of the module object. This function never fails. It is recommended extensions use other
PyModule _*() andPyObject _*() functions rather than directly manipulate a module’slict __.

char* PyModule _GetName(PyObject *modulie
Return modulés __name__ value. If the module does not provide one, or if it is not a string,
SystemError is raised andNULLs returned.

char* PyModule _GetFilename (PyObject *modulg
Return the name of the file from whichodulewas loaded usinghodulés __file __ attribute. If this is
not defined, or if it is not a string, raisgystemError and returrNULL

int PyModule _AddObject (PyObject *module, char *name, PyObject *vajue
Add an object tamoduleasname This is a convenience function which can be used from the module’s
initialization function. This steals a referencevimue Returns-1 on error,0 on success. New in version
2.0.

int PyModule _AddIntConstant (PyObject *module, char *name, int value
Add an integer constant tmoduleasname This convenience function can be used from the module’s
initialization function. Returnsl on error,0 on success. New in version 2.0.

int PyModule _AddStringConstant (PyObject *module, char *name, char *valpe
Add a string constant tmoduleasname This convenience function can be used from the module’s ini-
tialization function. The stringaluemust be null-terminated. Returak on error,0 on success. New in
version 2.0.

7.5.5 lIterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting the getitem __() method. The second works with a callable object and a sentinel
value, calling the callable for each item in the sequence, and ending the iteration when the sentinel value is
returned.

PyTypeObject PySeqlter _Type
Type object for iterator objects returned BySeqlter _New() and the one-argument form of the
iter() built-in function for built-in sequence types. New in version 2.2.

int PySeqlter _Check(op)
Return true if the type obpis PySeqlter _Type. New in version 2.2.

PyObject* PySeqlter _New(PyObject *sey
Return valueNew reference
Return an iterator that works with a general sequence olgeqt, The iteration ends when the sequence
raisesindexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCalllter _Type
Type object for iterator objects returned ByCalllter _New() and the two-argument form of the
iter() built-in function. New in version 2.2.

int PyCalllter _Check(op)
Return true if the type abpis PyCalllter ~ _Type. New in version 2.2.

PyObject* PyCalllter = _New(PyObject *callable, PyObject *sentinel
Return valueNew reference
Return a new iterator. The first parameteallable can be any Python callable object that can be called
with no parameters; each call to it should return the next item in the iteration. ¢étlablereturns a value
equal tosentine] the iteration will be terminated. New in version 2.2.

7.5. Other Objects 63

7.5.6 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty _Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr _NewGetSet (PyTypeObject *type, PyGetSetDef *ge}set
Return valueNew reference
New in version 2.2.

PyObject* PyDescr _NewMembe(PyTypeObiject *type, PyMemberDef *mjth
Return valueNew reference
New in version 2.2.

PyObject* PyDescr _NewMethod(PyTypeObject *type, PyMethodDef *mgth
Return valueNew reference
New in version 2.2.

PyObject* PyDescr _NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped
Return valueNew reference
New in version 2.2.

int PyDescr _IsData (PyObject *descy
Returns true if the descriptor objeatsscrdescribes a data attribute, or false if it describes a meithestr
must be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper _New(PyObiject *, PyObject ¥
Return valueNew reference
New in version 2.2.

7.5.7 Slice Objects

PyTypeObject PySlice _Type
The type object for slice objects. This is the saméyass.SliceType

int PySlice _Check(PyObject *oh
Returns true ibbis a slice objectpb must not beNULL

PyObject* PySlice _New(PyObject *start, PyObject *stop, PyObject *sep
Return valueNew reference
Return a new slice object with the given values. Flaat, stop andstepparameters are used as the values
of the slice object attributes of the same names. Any of the values miayJhg, in which case thé&lone
will be used for the corresponding attribute. Returt$LLif the new object could not be allocated.

int PySlice _Getindices (PySliceObject *slice, int length, int *start, int *stop, int *sfep
Retrieve the start, stop and step indices from the slice objeg assuming a sequence of lendghgth
Treats indices greater thdengthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices Wasenahd
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior
to 2.3, you would probably do well to incorporate the sourcd’gSlice _GetindiceseEx , suitably
renamed, in the source of your extension.

int PySlice _GetlndicesEx (PySliceObject *slice, int length, int *start, int *stop, int *step, int *slice-
length
Usable replacement fé?ySlice _Getindices . Retrieve the start, stop, and step indices from the slice
objectslice assuming a sequence of lendgéimgth and store the length of the slice sticelength Out of
bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.
New in version 2.3.

64 Chapter 7. Concrete Objects Layer

7.5.8 Weak Reference Objects

Python supportsveak referenceas first-class objects. There are two specific object types which directly imple-
ment weak references. The first is a simple reference object, and the second acts as a proxy for the original object
as much as it can.

int PyWeakref _Check (ob)
Return true ifobis either a reference or proxy object. New in version 2.2.

int PyWeakref _CheckRef (ob)
Return true ifobis a reference object. New in version 2.2.

int PyWeakref _CheckProxy (ob)
Return true ifobis a proxy object. New in version 2.2.

PyObject* PyWeakref _NewRef(PyObject *ob, PyObiject *callbagk
Return valueNew reference
Return a weak reference object for the objebt This will always return a new reference, but is not
guaranteed to create a new object; an existing reference object may be returned. The second parameter,
callback can be a callable object that receives notification whleis garbage collected; it should accept
a single paramter, which will be the weak reference object itsalibackmay also beNone or NULL If
obis not a weakly-referencable object, ocdllbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref _NewProxy (PyObject *ob, PyObiject *callbagk
Return valueNNew reference
Return a weak reference proxy object for the obat This will always return a new reference, but is
not guaranteed to create a new object; an existing proxy object may be returned. The second parameter,
callback can be a callable object that receives notification wbleis garbage collected; it should accept
a single paramter, which will be the weak reference object itsalfibackmay also beNone or NULL If
obis not a weakly-referencable object, ocdllbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref _GetObject (PyObiject *ref)
Return value Borrowed reference
Returns the referenced object from a weak refererefe, If the referent is no longer live, returidone.
New in version 2.2.

PyObject* PyWeakref _GET_OBJECT PyObject *ref)
Return value Borrowed reference
Similar toPyWeakref _GetObject() , butimplemented as a macro that does no error checking. New
in version 2.2.

7.5.9 CObjects

Refer toExtending and Embedding the Python Interpretaction 1.12, “Providing a C API for an Extension
Module,” for more information on using these objects.

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (asv@id* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.

int PyCObject _Check (PyObject *p
Returns true if its argument isRyCObject .

PyObject* PyCObject _FromVoidPtr (void* cobj, void (*destr)(void *)
Return valueNew reference

Creates &@yCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed, unless it iSlULL

7.5. Other Objects 65

PyObject* PyCObject _FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void ¥)
Return valueNew reference
Creates &@yCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed. Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject _AsVoidPtr (PyObject* selj
Returns the objectoid * that thePyCObject self was created with.

void* PyCObject _GetDesc (PyObject* selj
Returns the descriptiomoid * that thePyCObject self was created with.

7.5.10 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object
is created to store the value; the local variables of each stack frame that references the value contains a reference
to the cells from outer scopes which also use that variable. When the value is accessed, the value contained in
the cell is used instead of the cell object itself. This de-referencing of the cell object requires support from the
generated byte-code; these are not automatically de-referenced when accessed. Cell objects are not likely to be
useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell _Type
The type object corresponding to cell objects

int PyCell _Check(ob)
Return true ifobis a cell objectpb must not beNULL

PyObject* PyCell _New(PyObject *ob)
Return valueNew reference
Create and return a new cell object containing the valuérhe parameter may bé¢ULL

PyObject* PyCell _Get(PyObject *cel)
Return valueNew reference
Return the contents of the cekll.

PyObject* PyCell _GET PyObiject *cel)
Return valueBorrowed reference
Return the contents of the cekll, but without checking thatell is nonNULLand a cell object.

int PyCell _Set (PyObject *cell, PyObject *value
Set the contents of the cell objeasll to value This releases the reference to any current content of the cell.
valuemay beNULL cell must be norNULL if it is not a cell object-1 will be returned. On succes8,
will be returned.

void PyCell _SET(PyObject *cell, PyObject *value
Sets the value of the cell objextll to value No reference counts are adjusted, and no checks are made for
safety;cell must be norNULLand must be a cell object.

66 Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

void

int

void

Initialization, Finalization, and Threads

Py _lInitialize 0

Initialize the Python interpreter. In an application embedding Python, this should be called be-
fore using any other Python/C API functions; with the exceptionRyf_SetProgramName() ,
PyEval _InitThreads() , PyEval _ReleaselLock() , and PyEval _AcquireLock() . This
initializes the table of loaded modulesy6.modules), and creates the fundamental modules
__builtin __, __main __ andsys . It also initializes the module search patly¢.path). It does

not setsys.argv ; usePySys _SetArgv() for that. This is a no-op when called for a second time
(without calling Py_Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

Py_lslInitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_Finalize() is called, this returns false unfly _Initialize() is called again.

Py_Finalize ()
Undo all initializations made bRy _Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (sBg_Newlnterpreter() below) that were created and not yet destroyed
since the last call t®y_Initialize() . Ideally, this frees all memory allocated by the Python inter-
preter. This is a no-op when called for a second time (without cafiynglnitialize() again first).
There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors_(del __() methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of
memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory
tied up in circular references between objects is not freed. Some memory allocated by extension modules
may not be freed. Some extensions may not work properly if their initialization routine is called more than
once; this can happen if an application c#lis_Initialize() andPy_Finalize() more than once.

PyThreadState* Py_NewInterpreter 0

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, in-
cluding the fundamental modules builtin~ __, __main __ andsys . The table of loaded modules
(sys.modules) and the module search patty6.path) are also separate. The new environment has

no sys.argv variable. It has new standard I/O stream file objesyts.stdin , sys.stdout and
sys.stderr (however these refer to the same underlyitigE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessfllLL is returned; no exception is set since the exception

state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C
API functions, the global interpreter lock must be held before calling this function and is still held when

67

it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on
entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When
the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the
contents of this copy; the extensiornirit function is not called. Note that this is different from what
happens when an extension is imported after the interpreter has been completely re-initialized by calling
Py _Finalize() andPy_Initialize() ; inthat case, the extensionfit modulefunctionis called

again.

Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the same process, the
insulation between them isn't perfect — for example, using low-level file operationsdgelose()

they can (accidentally or maliciously) affect each other’'s open files. Because of the way extensions are
shared between (sub-)interpreters, some extensions may not work properly; this is especially likely when the
extension makes use of (static) global variables, or when the extension manipulates its module’s dictionary
after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods,
instances or classes between sub-interpreters, since import operations executed by such objects may affect
the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix bug that will be
addressed in a future release.)

void Py_EndIinterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states below. When the call returns, the current thread
state iSNULL All thread states associated with this interpreted are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returg.)Finalize() will destroy
all sub-interpreters that haven't been explicitly destroyed at that point.

void Py_SetProgramName (char *nam§
This function should be called befoRy _Initialize() is called for the first time, if it is called at all.
It tells the interpreter the value of tleegv[0] argument to thenain() function of the program. This is
used byPy_GetPath() and some other functions below to find the Python run-time libraries relative to
the interpreter executable. The default valugyghon’ . The argument should point to a zero-terminated
character string in static storage whose contents will not change for the duration of the program'’s execution.
No code in the Python interpreter will change the contents of this storage.

char* Py_GetProgramName ()
Return the program name set wily_SetProgramName() , or the default. The returned string points
into static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated
rules from the program name set wily_SetProgramName() and some environment variables; for
example, if the program name ‘fsisr/local/bin/python’ , the prefix is'/usr/local’ . The
returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-leveMakefile’ and the--prefix argument to theonfigure script at build time.
The value is available to Python code @.prefix . It is only useful on Wix. See also the next
function.

char* Py_GetExecPrefix ()
Return theexec-prefixfor installed platformdependent files. This is derived through a number of
complicated rules from the program name set with_SetProgramName() and some environment
variables; for example, if the program name'figsr/local/bin/python’ , the exec-prefix is
"lusr/local’ . The returned string points into static storage; the caller should not modify its value.
This corresponds to the exgarefix variable in the top-leveMakefile’ and the--exec-prefixargument to
theconfigure script at build time. The value is available to Python codsyassexec _prefix . Itis only
useful on WiIX.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in theudsr/local/plat’ subtree while platform independent may be installedusrlocal’.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines

68 Chapter 8. Initialization, Finalization, and Threads

running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Naneperating

systems are a different story; the installation strategies on those systems are so different that the prefix and
exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are
platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure tineunt or automount programs to shareusr/local’
between platforms while havindusr/local/plat’ be a different filesystem for each platform.

char* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the de-
fault module search path from the program name (s&yoySetProgramName() above). The returned
string points into static storage; the caller should not modify its value. The value is available to Python code
assys.executable

char* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
‘27 on UNIX, ‘; " on Windows, and\n '’ (the Ascil newline character) on Macintosh. The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
the listsys.path , which may be modified to change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are
the major and minor version separated by a period. The returned string points into static storage; the caller
should not modify its value. The value is available to Python codg/aversion

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. ONIY, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the valuésimos5’ . On Macintosh, itiSmac’ . On Windows, it
is'win’ . The returned string points into static storage; the caller should not modify its value. The value is
available to Python code ays.platform

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

‘Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code asys.copyright

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for exam-

ple:

"[GCC 2.7.2.2]"
The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialsies.version

const char* Py_GetBuildinfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28"

69

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialsgs.version

int PySys_SetArgv (intargc, char **argV)
Setsys.argv based orargc andargv. These parameters are similar to those passed to the program’s
main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn't a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialisgs.argv , a fatal condition is signalled
usingPy_FatalError()

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultane-
ously increment the reference count of the same object, the reference count could end up being incremented only
once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on Python
objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter
regularly releases and reacquires the lock — by default, every 100 bytecode instructions (this can be changed
with sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking I/O
operations like reading or writing a file, so that other threads can run while the thread that requests the 1/O is
waiting for the 1/0O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data
structure calledPyThreadState . This is new in Python 1.5; in earlier versions, such state was stored in global
variables, and switching threads could cause problems. In particular, exception handling is now thread safe, when
the application usesys.exc _info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the cufPgiithreadState structure. While most
thread packages have a way to store “per-thread global data,” Python’s internal platform independent thread ab-
straction doesn’t support this yet. Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.

...Do some blocking /O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py BEGIN_ALLOW_THREADS
...Do some blocking 1/0 operation...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOWTHREADSmacro opens a new block and declares a hidden local variable; the
Py_END ALLOWTHREADSnNacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and lock manipu-
lations.

When thread support is enabled, the block above expands to the following code:

70 Chapter 8. Initialization, Finalization, and Threads

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking /O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaselLock();

...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particiPat-val _RestoreThread() saves and restores the value of

the global variablerrno , since the lock manipulation does not guaranteeehaio is left alone. Also, when

thread support is disable@®yEval _SaveThread() andPyEval _RestoreThread() don't manipulate

the lock; in this caseRyEval _ReleaseLock() = andPyEval _AcquireLock() are not available. This is

done so that dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter
that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and
saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another
thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don't have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves
into existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread
state pointer, before they can start using the Python/C API. When they are done, they should reset the thread state
pointer, release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter state
data structure hold global data that is shared by all threads in an interpreter, for example the module administration
(sys.modules). Depending on your needs, you can either create a new interpreter state data structure, or share
the interpreter state data structure used by the Python main thread (to access the latter, you must obtain the thread
state and access isterp member; this must be done by a thread that is created by Python or by the main
thread after Python is initialized).

Assuming you have access to an interpreter object, the typical idiom for calling into Python from a C thread is

8.1. Thread State and the Global Interpreter Lock 71

PyThreadState *tstate;
PyObject *result;

[* interp is your reference to an interpreter object. */
tstate = PyThreadState_New(interp);
PyEval_AcquireThread(tstate);

[* Perform Python actions here. */
result = CallSomeFunction();
[* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyEval_ReleaseThread(tstate);

/* You can either delete the thread state, or save it
until you need it the next time. */
PyThreadState_Delete(tstate);

PylnterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to
the same interpreter share their module administration and a few other internal items. There are no public
members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available mem-
ory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to
which interpreter they belong.

PyThreadState

void

void

void

void

This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp , which points to this thread’s interpreter state.

PyEval _InitThreads ()

Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations suepEaal _ReleaselLock()
or PyEval _ReleaseThread(tstat9 . It is not needed before callingyEval _SaveThread() or
PyEval _RestoreThread()

This is a no-op when called for a second time. It is safe to call this function before calling
Py _Initialize()

When only the main thread exists, no lock operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock
is not created initially. This situation is equivalent to having acquired the lock: when there is only a single
thread, all object accesses are safe. Therefore, when this function initializes the lock, it also acquires it.
Before the Pythorthread module creates a new thread, knowing that either it has the lock or the lock
hasn’t been created yet, it caRyEval _InitThreads() . When this call returns, it is guaranteed that

the lock has been created and that it has acquired it.

Itis not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

PyEval _AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues. This function is not available when thread support is disabled at compile time.

PyEval _ReleaselLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available
when thread support is disabled at compile time.

PyEval _AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and then set the current thread statat® which should not b&lULL
The lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function

72

Chapter 8. Initialization, Finalization, and Threads

is not available when thread support is disabled at compile time.

void PyEval _ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNQLL and release the global interpreter lock. The lock must have been
created earlier and must be held by the current thread.tStheeargument, which must not BQULL, is
only used to check that it represents the current thread state — if it isn’t, a fatal error is reported. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval _SaveThread ()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is NotLL). If the lock has been created, the current
thread must have acquired it. (This function is available even when thread support is disabled at compile
time.)

void PyEval _RestoreThread (PyThreadState *tstaje
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate which must not béNULL If the lock has been created, the current thread must not have acquired
it, otherwise deadlock ensues. (This function is available even when thread support is disabled at compile
time.)

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOWTHREADS
This macro expands to{PyThreadState * _save; _save = PyEval _SaveThread(); .
Note that it contains an opening brace; it must be matched with a follokyndEND ALLOW THREADS
macro. See above for further discussion of this macro. It is a no-op when thread support is disabled at
compile time.

Py_END ALLOWTHREADS
This macro expands t®®yEval _RestoreThread(_save); } . Note thatit contains a closing brace;
it must be matched with an earliey_BEGIN_ALLOW THREADSnacro. See above for further discussion
of this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK.THREADS

This macro expands to PyEval _RestoreThread(_save); it is equivalent to
Py_END ALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCKTHREADS
This macro expands to _save = PyEval _SaveThread(); it is equivalent to

Py_BEGIN_ALLOWTHREADSwithout the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be
called only when the interpreter lock has been created.

PylnterpreterState* PylnterpreterState _New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PylnterpreterState _Clear (PylInterpreterState *interp
Reset all information in an interpreter state object. The interpreter lock must be held.

void PylinterpreterState _Delete (PyInterpreterState *interp
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have
been reset with a previous call RyInterpreterState _Clear()

PyThreadState* PyThreadState _New(PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState _Clear (PyThreadState *tstaje
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState _Delete (PyThreadState *tstaje

8.1. Thread State and the Global Interpreter Lock 73

Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset
with a previous call ta?yThreadState _Clear()

PyThreadState* PyThreadState _Get()
Return the current thread state. The interpreter lock must be held. When the current thread\dfate is
this issues a fatal error (so that the caller needn’t checklfdicL).

PyThreadState* PyThreadState _Swap(PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstaé@twhich may beNULL The
interpreter lock must be held.

PyObject* PyThreadState _GetDict ()
Return value Borrowed reference
Return a dictionary in which extensions can store thread-specific state information. Each extension should
use a unigue key to use to store state in the dictionary. It is okay to call this function when no current thread
state is available. If this function returb8JLL, no exception has been raised and the caller should assume
no current thread state is available. Changed in version 2.3: Previously this could only be called when a
current thread is active, alMlJLL meant that an exception was raised.

int PyThreadState _SetAsyncExc (long id, PyObject *ext
Asynchronously raise an exception in a thread. ithargument is the thread id of the target threexic
is the exception object to be raised. This function does not steal any referereas T prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; if it returns a number greater than one, you're in trouble, and you should
call it again withexcset toNULL to revert the effect. This raises no exceptions. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed,
the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function
are the same as had been reported to the Python-level trace functions in previous versions.

int (*Py _tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered usiyEval _SetProfile() andPyEval _SetTrace()
The first parameter is the object passed to the registration functinj,dsameis the frame object to which
the event pertainsyhatis one of the constan®RyTrace _CALL, PyTrace _EXCEPTPyTrace _LINE
or PyTrace _RETURNandarg depends on the value wfhat

Value of what | Meaning of arg

PyTrace _CALL Always NULL

PyTrace _EXCEPT| Exception information as returned bBys.exc _info()
PyTrace _LINE Always NULL

PyTrace _RETURN| Value being returned to the caller.

int PyTrace _CALL
The value of thevhatparameter to 8y_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace _EXCEPT
The value of thevhat parameter to #y_tracefunc function when an exception has been raised. The
callback function is called with this value favhat when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propoga-
tion causes the Python stack to unwind, the callback is called upon return to each frame as the exception
propagates. Only trace functions receives these events; they are not needed by the profiler.

int PyTrace _LINE

74 Chapter 8. Initialization, Finalization, and Threads

The value passed as tivbatparameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace _RETURN
The value for thavhatparameter t®?y_tracefunc functions when a call is returning without propogat-
ing an exception.

void PyEval _SetProfile (Py_tracefunc func, PyObject *opj
Set the profiler function téunc Theobj parameter is passed to the function as its first parameter, and may
be any Python object, MULL If the profile function needs to maintain state, using a different valuelipr
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

void PyEval _SetTrace (Py_tracefunc func, PyObject *opj
Set the tracing function ttunc This is similar toPyEval _SetProfile() , except the tracing function
does receive line-number events.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylnterpreterState* PylnterpreterState _Head()
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PylnterpreterState* PylnterpreterState _Next (PylnterpreterState *interp
Return the next interpreter state object afitéerp from the list of all such objects. New in version 2.2.

PyThreadState * PylInterpreterState _ThreadHead (PylnterpreterState *interp
Return the a pointer to the firByThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState _Next (PyThreadState *tstaje
Return the next thread state object aftetate from the list of all such objects belonging to the same
PylInterpreterState object. New in version 2.2.

8.3. Advanced Debugger Support 75

76

CHAPTER
NINE

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally byPgthon memory managerThe Python memory
manager has different components which deal with various dynamic storage management aspects, like sharing,
segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the raw
memory allocator, several object-specific allocators operate on the same heap and implement distinct memory
management policies adapted to the peculiarities of every object type. For example, integer objects are managed
differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements
and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and
that the user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that
heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by the
Python memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C librarymalloc() , calloc() , realloc() andfree() . This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement dif-
ferent algorithms and operate on different heaps. However, one may safely allocate and release memory blocks
with the C library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();
...Do some /O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter is
extended with new object types written in C. Another reason for using the Python heap is the defimrtthe

Python memory manager about the memory needs of the extension module. Even when the requested memory
is used exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory
manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently,

77

under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown
in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero
bytes, are available for allocating and releasing memory from the Python heap:

void* PyMemMalloc (size_tn)
Allocatesn bytes and returns a pointer of typeid* to the allocated memory, &#ULL if the request fails.
Requesting zero bytes returns a distinct NdkL pointer if possible, as PyMem Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMemRealloc (void *p, size.t n)
Resizes the memory block pointed to pyo n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. ffis NULL, the call is equivalent t®yMem Malloc(n) ; else ifnis equal to
zero, the memory block is resized but is not freed, and the returned pointer SUWioln-Unlessp is NULL,
it must have been returned by a previous cafPydem Malloc() or PyMem Realloc()

void PyMem.Free (void *p)
Frees the memory block pointed to ky which must have been returned by a previous call to
PyMemMalloc() or PyMemRealloc() . Otherwise, or ifPyMem.Free(p) has been called be-
fore, undefined behavior occurs.gis NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Notd ¥RaErefers to any C type.

TYPE PyMemNew TYPE, sizet n)
Same a¥yMem Malloc() , butallocateg n * sizeof(TYPB) bytes of memory. Returns a pointer
cast toTYPE . The memory will not have been initialized in any way.

TYPE PyMem.Resize (void *p, TYPE, sizet n)
Same aPyMem Realloc() , but the memory block is resized (@ * sizeof(TYPB) bytes. Re-
turns a pointer cast tdYPE.

void PyMem.Del (void *p)
Same a®yMem Free()

In addition, the following macro sets are provided for calling the Python memory allocator directly, without
involving the C API functions listed above. However, note that their use does not preserve binary compatibility
accross Python versions and is therefore deprecated in extension modules.

PyMem MALLOC(), PyMem REALLOC(), PyMem FREE() .
PyMem NEW(), PyMem RESIZE() , PyMem.DEL() .

9.3 Examples

Here is the example from section 9.1, rewritten so that the 1/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for 1/O */

if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some 1/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

78 Chapter 9. Memory Management

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for /O */

if (buf == NULL)
return PyErr_NoMemory();
[* ..Do some 1I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set.
Indeed, it is required to use the same memory API family for a given memory block, so that the risk of mixing
different allocators is reduced to a minimum. The following code sequence contains two errors, one of which is
labeled adatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);

PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(bufl); [* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released withyObject _New() , PyObject _NewVar() andPyObject _Del() , or with
their corresponding macrdé®/Object _NEW(), PyObject _NEWVAR() andPyObject _DEL() .

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 79

80

CHAPTER
TEN

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject _New(PyTypeObject *type
Return valueNew reference

PyObject* _PyObject _NewVar(PyTypeObject *type, int size
Return valueNew reference

void _PyObject _Del (PyObject *op

PyObject* PyObject _Init (PyObject *op, PyTypeObject *type
Return valueBorrowed reference
Initialize a newly-allocated objedaip with its type and initial reference. Returns the initialized object. If
typeindicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of
observed objects. Other fields of the object are not affected.

PyVarObject* PyObject _InitVar (PyVarObject *op, PyTypeObject *type, int sjize
Return value Borrowed reference
This does everythin@yObject _Init() does, and also initializes the length information for a variable-
size object.

TYPE PyObject _New(TYPE, PyTypeObiject *type
Allocate a new Python object using the C structure tyy&@Eand the Python type objettpe Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of
the memory allocation is determined from tipe_basicsize field of the type object.

TYPE PyObject _NewVar(TYPE, PyTypeObiject *type, int sjze
Allocate a new Python object using the C structure tyy&@Eand the Python type objettpe Fields not
defined by the Python object header are not initialized. The allocated memory allows TofRiEstructure
plussizefields of the size given by thip _itemsize field oftype This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject _Del (PyObject *op
Releases memory allocated to an object usty@bject _New() or PyObject _NewVar() . This is
normally called from thdp _dealloc handler specified in the object’'s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

TYPE PyObject _NEWTYPE, PyTypeObiject *type
Macro version ofPyObject _New() , to gain performance at the expense of safety. This does not check
typefor aNULLvalue.

TYPE PyObject _NEWVAR TYPE, PyTypeObiject *type, int sjze
Macro version ofPyObject _NewVar() , to gain performance at the expense of safety. This does not

81

checktypefor aNULL value.

void PyObject _DEL(PyObject *op
Macro version oPyObject _Del()

PyObject* Py_InitModule (char *name, PyMethodDef *methods
Return valueBorrowed reference
Create a new module object based on a name and table of functions, returning the new module object.

Changed in version 2.3: Older versions of Python did not suppottL as the value for thenethodsargu-
ment.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *dloc
Return valueBorrowed reference
Create a new module object based on a name and table of functions, returning the new module object. If
docis nonNULL, it will be used to define the docstring for the module.

Changed in version 2.3: Older versions of Python did not supyottL as the value for thenethodsargu-
ment.

PyObject* Py_InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver
Return valueBorrowed reference
Create a new module object based on a name and table of functions, returning the new module dbject. If
is nonNULL, it will be used to define the docstring for the modulesédf is nonNULL, it will passed to
the functions of the module as their (otherwi¢gLL) first parameter. (This was added as an experimental
feature, and there are no known uses in the current version of Pythongpker, the only value which
should be passed is defined by the condRafitHONAPI _VERSION

Note: Most uses of this function should probably be using Bye_InitModule3() instead; only use
this if you are sure you need it.

Changed in version 2.3: Older versions of Python did not suppottL as the value for thenethodsargu-
ment.

DL_IMPORT

PyObject _Py_NoneStruct
Object which is visible in Python ddone. This should only be accessed using®ye None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in
memory. These are represented byRy®©bject andPyVarObject types, which are defined, in turn, by the
expansions of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to
treat a pointer to an object as an object. In a normal “release” build, it contains only the objects reference
count and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion
of thePyObject _HEADmacro.

PyVarObject
This is an extension dPyObject that adds theb _size field. This is only used for objects that have
some notion ofength This type does not often appear in the Python/C API. It corresponds to the fields
defined by the expansion of tfyObject _VAR_HEADmacro.

These macros are used in the definitioiPgDbject andPyVarObject

PyObject _HEAD
This is a macro which expands to the declarations of the fields oPjt@bject type; it is used when
declaring new types which represent objects without a varying length. The specific fields it expands to de-

82 Chapter 10. Object Implementation Support

pends on the definition ¢fy_TRACE_REFS By default, that macro is not defined, aRgObject _HEAD
expands to:

int ob_refcnt;
PyTypeObject *ob_type;

WhenPy_TRACE REFSis defined, it expands to:

PyObject * ob_next, * ob_prev;
int ob_refcnt;
PyTypeObject *ob_type;

PyObject _VAR HEAD
This is a macro which expands to the declarations of the fields d?yMarObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject HEAD
int ob_size;

Note thatPyObject _HEADIs part of the expansion, and that it's own expansion varies depending on the
definition of Py_TRACE.REFS

PyObject HEAD_INIT

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return valbJisl, an exception shall have
been set. If noNULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field | C Type | Meaning

ml_name | char* name of the method

ml _meth PyCFunction| pointer to the C implementation

ml _flags int flag bits indicating how the call should be constructed
ml _doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return
PyObject* . If the function is not of thePyCFunction , the compiler will require a cast in the method ta-
ble. Even thoughtPyCFunction defines the first parameter 8yObject* , it is common that the method
implementation uses a the specific C type of¢hH object.

The ml _flags field is a bitfield which can include the following flags. The individual flags indicate ei-
ther a calling convention or a binding convention. Of the calling convention flags,MBEFH VARARGSnNd
METHKEYWORD&n be combined (but note thstETH KEYWORDSone is equivalent tMETHVARARGS

| METH_KEYWORDSAny of the calling convention flags can be combined with a binding flag.

METHVARARGS
This is the typical calling convention, where the methods have the Ry@Function . The function
expects twd’yObject* values. The first one is theelf object for methods; for module functions, it has the
value given tdPy _InitModule4() (or NULLIf Py_InitModule() was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg _ParseTuple() or PyArg _UnpackTuple .

METHKEYWORDS
Methods with these flags must be of tyggyCFunctionWithKeywords . The function ex-
pects three parametersself, args and a dictionary of all the keyword arguments. The flag

10.2. Common Object Structures 83

is typically combined with METHVARARGS and the parameters are typically processed using
PyArg _ParseTupleAndKeywords()

METHNOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METHNOARGSag. They need to be of tygeyCFunction . When used with object methods, the first
parameter is typically namesklf and will hold a reference to the object instance. In all cases the second
parameter will beNULL

METHO
Methods with a single object argument can be listed with BETHO flag, instead of invoking
PyArg _ParseTuple() with a"O" argument. They have the typ®/CFunction , with the self pa-
rameter, and 8yObject* parameter representing the single argument.

METHOLDARGS
This calling convention is deprecated. The method must be ofRy@Function . The second argument
is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects
if more than one argument is given. There is no way for a function using this convention to distinguish
between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of
classes. These may not be used for functions defined for modules. At most one of these flags may be set for any
given method.

METHCLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to createlass methodssimilar to what is created when using ttlassmethod() built-in function.
New in version 2.3.

METHSTATIC
The method will be passaddULL as the first parameter rather than an instance of the type. This is used
to createstatic methodssimilar to what is created when using teiaticmethod() built-in function.

New in version 2.3.

PyObject* Py_FindMethod (PyMethodDef table[], PyObject *ob, char *name
Return valueNew reference
Return a bound method object for an extension type implemented in C. This can be use-
ful in the implementation of atp _getattro or tp _getattr handler that does not use the
PyObject _GenericGetAttr() function.

10.3 Type Obijects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
thePyTypeObject structure. Type objects can be handled using any dPif@bject _*() orPyType _*()

functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to
how objects behave, so they are very important to the interpreter itself and to any extension module that implements
new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type
object stores a large number of values, mostly C function pointers, each of which implements a small part of the
type’s functionality. The fields of the type object are examined in detail in this section. The fields will be described
in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intinto-
bjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmp-
func, reprfunc, hashfunc

The structure definition foPyTypeObject can be found inlhclude/object.h’. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_ VAR_HEAD

84 Chapter 10. Object Implementation Support

char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

10.3. Type Objects

85

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends tAgVarObject structure. Theb_size field is used for dynamic types
(created bytype _new() , usually called from a class statement). Note tRgType _Type (the metatype)
initializestp _itemsize , which means that its instances (i.e. type objects¥thave theob _size field.

PyObject* _ob_next

PyObject* _ob_prev
These fields are only present when the m&yo TRACE REFSis defined. Their initialization tdlULL is
taken care of by th@yObject _HEAD.INIT macro. For statically allocated objects, these fields always
remainNULL For dynamically allocated objects, these two fields are used to link the object into a doubly-
linked list of all live objects on the heap. This could be used for various debugging purposes; currently
the only use is to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

int ob_refcnt
This is the type object’s reference count, initialized tby thePyObject _HEAD.INIT macro. Note that
for statically allocated type objects, the type’s instances (objects witnsgype points back to the type)
donotcount as references. But for dynamically allocated type objects, the ins@mcesnt as references.

This field is not inherited by subtypes.

PyTypeObject* ob_type
This is the type's type, in other words its metatype. It is initialized by the argument to the
PyObject _HEADINIT macro, and its value should normally B®yType _Type. However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pidkLto thePyObject _HEAD.INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are créat&gipe _Ready() checks ifob_type
isNULL, and if so, initializes it: in Python 2.2, it is set&PyType _Type; in Python 2.2.1 and later it will
be initialized to theob _type field of the base clas®yType _Ready() will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by
subtypes.

int ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp _name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type nafhéefined in modulélin subpackag®in package
P should have thgp _nameinitializer "P.Q.M.T"

86 Chapter 10. Object Implementation Support

int
int

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for Key_module __’ .

For statically allocated type objects, the trame field should contain a dot. Everything before the last dot
is made accessible as themodule __ attribute, and everything after the last dot is made accessible as the
__name__ attribute.

If no dot is present, the entinp _name field is made accessible as thename__ attribute, and the
__module __ attribute is undefined (unless explicitly set in the dictionary, as explained above). This
means your type will be impossible to pickle.

This field is not inherited by subtypes.

tp _basicsize
tp _itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have greitemsize field, types with
variable-length instances have a non-zgraitemsize field. For a type with fixed-length instances, all
instances have the same size, givetpin_basicsize

For a type with variable-length instances, the instances must haole agize field, and the instance size

is tp _basicsize plus N timestp _itemsize , where N is the “length” of the object. The value of

N is typically stored in the instancesb_size field. There are exceptions: for example, long ints use

a negativeob _size to indicate a negative number, and Naiss(ob _size) there. Also, the presence

of anob _size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob_size field).

The basic size includes the fields in the instance declared by the nig@iject _HEAD or
PyObject _VAR_HEAD(whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp _basicsize s to use thesizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC
header size was includedtp _basicsize).

These fields are inherited separately by subtypes. If the base type has a nom-zeemsize |, itis
generally not safe to sgb _itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value otp _basicsize . Example: suppose atype implements an arrajooble . tp _itemsize

is sizeof(double) . It is the programmer’s responsibility thfp _basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirementdouble).

destructor tp _dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singtmesandEllipsis).

The destructor function is called by they_DECREF() and Py_XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existance, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the typp’sfree function. If the type

is not subtypable (doesn’t have tiy_TPFLAGS BASETYPEflag bit set), it is permissible to call

the object deallocator directly instead of vip _free . The object deallocator should be the one
used to allocate the instance; this is normdtyObject _Del() if the instance was allocated using
PyObject _New() or PyOject _VarNew() , or PyObject _GC Del() if the instance was allocated
usingPyObject _GC_New() orPyObject _GC VarNew() .

This field is inherited by subtypes.

printfunc tp _print

An optional pointer to the instance print function.

The print function is only called when the instance is printed teal file; when it is printed to a pseudo-
file (like a StringlO instance), the instancetp _repr ortp _str function is called to convertitto a

10.3. Type Objects 87

string. These are also called when the tygp’s_print field is NULL A type should never implement
tp _print in a way that produces different output thn_repr ortp _str would.

The print function is called with the same signature &3Object _Print() int

tp _print(PyObject *self, FILE *file, int flags) . The self argument is the in-
stance to be printed. THée argument is the stdio file to which it is to be printed. Tregsargument is
composed of flag bits. The only flag bit currently defineBys PRINT_RAWWhen thePy_PRINT_RAW
flag bit is set, the instance should be printed the same watp astr would format it; when the
Py_PRINT_RAWflag bit is clear, the instance should be printed the same wis apr would format
it. It should return-1 and set an exception condition when an error occurred during the comparison.

It is possible that thép _print field will be deprecated. In any case, it is recommended not to define
tp _print , but instead to rely otp _repr andtp _str for printing.

This field is inherited by subtypes.

getattrfunc tp _getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp _getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as RyObject _GetAttrString()

This field is inherited by subtypes together with_getattro : a subtype inherits bottp _getattr
andtp _getattro from its base type when the subtypgs_getattr andtp _getattro are both
NULL

setattrfunc tp _setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp _setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as RyObject _SetAttrString()

This field is inherited by subtypes together with_setattro : a subtype inherits bottp _setattr
andtp _setattro from its base type when the subtypgs_setattr ~ andtp _setattro are both
NULL

cmpfunc tp _compare
An optional pointer to the three-way comparison function.

The signature is the same as feyObject _Compare() . The function should returth if self greater
thanother, O if self is equal toother, and-1 if self less tharother. It should returnl and set an exception
condition when an error occurred during the comparison.

This field is inherited by subtypes together with _richcompare andtp _hash: a subtypes inher-
its all three oftp _compare , tp _richcompare , andtp _hash when the subtype’sp _compare ,
tp _richcompare ,andtp _hash are alINULL

reprfunc tp _repr
An optional pointer to a function that implements the built-in functiepr()

The signature is the same as RyObject _Repr() ; it must return a string or a Unicode object. Ideally,
this function should return a string that, when passeevtl() , given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string startingwitmd ending with
‘>' from which both the type and the value of the object can be deduced.

When this field is not set, a string of the fore%s object at %p> ’is returned, wherésosis replaced
by the type name, arfbpby the object’'s memory address.

This field is inherited by subtypes.
PyNumberMethods *tpas_number;
XXX
PySequenceMethods *tps_sequence;
XXX
PyMappingMethods *tpas _mapping;

88 Chapter 10. Object Implementation Support

XXX

hashfunc tp _hash

An optional pointer to a function that implements the built-in functiash() .

The signature is the same as fyObject _Hash() ; it must return a C long. The valud@ should not
be returned as a normal return value; when an error occurs during the computation of the hash value, the
function should set an exception and retutn

When this field is not set, two possibilities exist: if tipe_compare andtp _richcompare fields are
both NULL, a default hash value based on the object’'s address is returned; otherWigeeError is
raised.

This field is inherited by subtypes together with_richcompare andtp _compare : a subtypes in-
herits all three ofp _compare ,tp _richcompare ,andtp _hash, when the subtype® _compare ,
tp _richcompare andtp _hash are allNULL

ternaryfunc tp _call

An optional pointer to a function that implements calling the object. This shouNUWid._ if the object is
not callable. The signature is the same asgObject _Call()

This field is inherited by subtypes.

reprfunc tp _str

An optional pointer to a function that implements the built-in operasizf) . (Note thatstr is a type
now, andstr() calls the constructor for that type. This constructor cB§©Object _Str() to do the
actual work, andPyObject _Str() will call this handler.)

The signature is the same as foyObject _Str() ; it must return a string or a Unicode object. This
function should return a “friendly” string representation of the object, as this is the representation that will
be used by the print statement.

When this field is not seRyObject _Repr() is called to return a string representation.
This field is inherited by subtypes.

getattrofunc tp _getattro
An optional pointer to the get-attribute function.
The signature is the same as f@yObject _GetAttr() . It is usually convenient to set this field to
PyObject _GenericGetAttr() , which implements the normal way of looking for object attributes.

This field is inherited by subtypes together wigh_getattr : a subtype inherits bottp _getattr and
tp _getattro from its base type when the subtypgs_getattr ~ andtp _getattro are bothNULL

setattrofunc tp _setattro
An optional pointer to the set-attribute function.
The signature is the same as f8yObject _SetAttr() . It is usually convenient to set this field to
PyObject _GenericSetAttr() , which implements the normal way of setting object attributes.

This field is inherited by subtypes together wiph_setattr : a subtype inherits botlp _setattr and
tp _setattro from its base type when the subtypgis_setattr ~ andtp _setattro are bothNULL

PyBufferProcs* tp _as _buffer

long

Pointer to an additional structure contains fields relevant only to objects which implement the buffer inter-
face. These fields are documented in “Buffer Object Structures” (section 10.7).

Thetp _as _buffer field is not inherited, but the contained fields are inherited individually.

tp _flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp _as _number,tp _as_sequence ,tp _as_mapping , andtp _as _buffer) that were historically

not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zerd\WLL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has

a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into
the subtype together with a pointer to the extension structure. Pihd PFLAGS HAVE_GCflag bit is

10.3.

Type Objects 89

inherited together with thgp _traverse andtp _clear fields, i.e. if thePy_TPFLAGS HAVE.GC
flag bit is clear in the subtype and tiye _traverse andtp _clear fields in the subtype exist (as
indicated by thé’y _TPFLAGS HAVE_RICHCOMPAR#ag bit) and havéNULL values.

The following bit masks are currently defined; these can be or-ed together usingpezator to form the
value of thetp _flags field. The macrd®yType _HasFeature() takes a type and a flags valtpand
f, and checks whethép->tp _flags & f is non-zero.

Py_TPFLAGS HAVE GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp _as _buffer has the
bf _getcharbuffer field.

Py_TPFLAGS HAVE_ SEQUENCHN
If this bit is set, thePySequenceMethods struct referenced byp _as _sequence has the
sq_contains field.

Py_TPFLAGS GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS HAVE_INPLACEOPS

If this bit is set, the PySequenceMethods struct referenced byp _as_sequence and
the PyNumberMethods structure referenced byp _as_number contain the fields for
in-place operators. In particular, this means that #gNumberMethods structure has
the fields nb_inplace _add, nb_inplace _subtract , nb_inplace _multiply
nb_inplace _divide |, nb_inplace _remainder |, nb_inplace _power,
nb_inplace _lshift ,nb_inplace _rshift ,nb_inplace _and,nb_inplace _xor ,and
nb_inplace _or ; and thePySequenceMethods struct has the fieldsg _inplace _concat

andsq_inplace _repeat .

Py_TPFLAGS CHECKTYPES
If this bit is set, the binary and ternary operations in #yNumberMethods structure refer-
enced bytp _as _number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies tonb_add, nb_subtract ,nb_multiply ,nb_divide ,nb_remainder ,nb_divmod ,
nb _power , nb_Ishift ,nb_rshift ,nb_and, nb_xor ,andnb _or.

Py_TPFLAGS HAVE RICHCOMPARE
If this bit is set, the type object has the _richcompare field, as well as thép _traverse and
thetp _clear fields.

Py_TPFLAGS HAVE_ WEAKREFS
If this bit is set, thetp _weaklistoffset field is defined. Instances of a type are weakly refer-
enceable if the typep _weaklistoffset field has a value greater than zero.

Py_TPFLAGS HAVE.ITER
If this bit is set, the type object has the _iter andtp _iternext fields.

Py_TPFLAGS HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python
2.2: tp _methods, tp _members, tp _getset , tp _base, tp _dict , tp _descr _get,
tp _descr _set , tp _dictoffset ,tp _init , tp _alloc ,tp _new, tp _free ,tp _is _gc,
tp _bases ,tp _mro, tp _cache ,tp _subclasses ,andtp _weaklist

Py_TPFLAGS HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this caseb ttigpe field
of its instances is considered a reference to the type, and the type object is INCREF'ed when a new
instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances
of subtypes; only the type referenced by the instance’syqie gets INCREF'ed or DECREF’ed).

Py_TPFLAGS BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a "final” class in Java).

Py_TPFLAGS READY
This bit is set when the type object has been fully initializedyy{ype _Ready() .

90

Chapter 10. Object Implementation Support

Py_TPFLAGS READYING
This bit is set whilePyType _Ready() is in the process of initializing the type object.

Py_TPFLAGS HAVE GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created usind’yObject _GC_New() and destroyed usinByObject _GC._Del() . More infor-
mation in section XXX about garbage collection. This bit also implies that the GC-related fields
tp _traverse andtp _clear are present in the type object; but those fields also exist when
Py_TPFLAGS HAVE _GCis clear butPty _TPFLAGS HAVE_RICHCOMPARE set).

Py_TPFLAGS DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following
bits: Py_TPFLAGS HAVE_.GETCHARBUFFER Py_TPFLAGS HAVE SEQUENCHN,
Py_TPFLAGS HAVE_INPLACEOPS Py_TPFLAGS HAVE_RICHCOMPARE
Py_TPFLAGS HAVE WEAKREFS Py_TPFLAGS HAVEITER, and
Py_TPFLAGS HAVE_CLASS

char* tp _doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed
as the__doc __ attribute on the type and instances of the type.

This field isnotinherited by subtypes.
The following three fields only exist if they_TPFLAGS HAVE_RICHCOMPAR#ag bit is set.

traverseproc tp _traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS HAVE_GCflag bit is set. More information in section 10.9 about garbage collection.

This field is inherited by subtypes together with _clear and thePy_TPFLAGS HAVE_GCflag bit:
the flag bit,tp _traverse , andtp _clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has they_TPFLAGS HAVE_RICHCOMPARfag bit set.

inquiry tp _clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS HAVE_GCflag bit is set. More information in section 10.9 about garbage collection.

This field is inherited by subtypes together with _clear and thePy_TPFLAGS HAVE _GCflag bit:
the flag bit,tp _traverse , andtp _clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has they_TPFLAGS HAVE_RICHCOMPARftag bit set.

richcmpfunc tp _richcompare
An optional pointer to the rich comparison function.

The signature is the same as #@yObject _RichCompare() . The function should returd if the
requested comparison returns trQef it returns false. It should returrl and set an exception condition
when an error occurred during the comparison.

This field is inherited by subtypes together with _compare andtp _hash: a subtype inherits
all three oftp _compare , tp _richcompare , andtp _hash, when the subtype’sp _compare ,
tp _richcompare ,andtp _hash are allINULL

The following constants are defined to be used as the third argumetp faichcompare and for
PyObject _RichCompare()

Constant | Comparison
Py_LT <
Py_LE <=
Py,EQ ==
Py_NE 1=
Py_GT >
Py_GE >=

The next field only exists if thy _TPFLAGS HAVE_ WEAKREF8ag bit is set.

long tp _weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in

10.3. Type Objects 91

the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject _ClearWeakRefs() and thePyWeakref _*() functions. The instance structure needs
to include a field of typd’yObject* which is initialized toNULL

Do not confuse this field witltp _weaklist ; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype uses a different weak reference list head than the base type. Since the list head is
always found viap _weaklistoffset , this should not be a problem.

When a type defined by a class statement has rglots __ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to
the instance layout and setting ttpe _weaklistoffset of that slot’s offset.

When a type's__slots __ declaration contains a slot named weakref __, that slot becomes
the weak reference list head for instances of the type, and the slot's offset is stored in the type’s
tp _weaklistoffset

When a type’s__slots __ declaration does not contain a slot namedveakref __, the type inherits
itstp _weaklistoffset from its base type.

The next two fields only exist if thBy _TPFLAGS HAVE_CLASSflag bit is set.

getiterfunc tp _iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that
the instances of this type are iterable (although sequences may be iterable without this function, and classic
instances always have this function, even if they don’t define_dter __() method).

This function has the same signatureP3®bject _Getlter()
This field is inherited by subtypes.

iternextfunc tp _iternext
An optional pointer to a function that returns the next item in an iterator, or r&isgdteration when
the iterator is exhausted. Its presence normally signals that the instances of this type are iterators (although
classic instances always have this function, even if they don't defirexi®) method).

Iterator types should also define ttpe_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signaturePadter _Next()
This field is inherited by subtypes.

The next fields, up to and includirtgp _weaklist , only exist if thePy _TPFLAGS HAVE_CLASSflag bit is
set.

struct PyMethodDef* tp _methods
An optional pointer to a statidUL L-terminated array dPyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionarytfsedict below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp _members
An optional pointer to a statilULL-terminated array oPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionarytgsegict below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp _getset
An optional pointer to a statiblULL-terminated array oPyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionantffsegict below) containing a
getset descriptor.

92 Chapter 10. Object Implementation Support

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

typedef struct PyGetSetDef {

char *name; /* attribute name */

getter get; [* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */

void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;

PyTypeObject* tp _base

An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it default&RyBaseObject _Type (which to
Python programmers is known as the tyisect).

PyObject* tp _dict

The type’s dictionary is stored here ByType _Ready() .

This field should normally be initialized tdULL before PyTypeReady is called; it may also be initialized

to a dictionary containing initial attributes for the type. Ofdgl'ype _Ready() has initialized the type,

extra attributes for the type may be added to this dictionary only if they don’t correspond to overloaded
operations (like__add __()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp _descr _get

An optional pointer to a "descriptor get” function.
XXX blah, blah.
This field is inherited by subtypes.

descrsetfunc tp _descr _set

long

An optional pointer to a "descriptor set” function.
XXX blah, blah.
This field is inherited by subtypes.

tp _dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject _GenericGetAttr()

Do not confuse this field witkp _dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset from the *end* of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtygtes of tuple

Note that thep _basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp _dictoffset should be set te4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negativdictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):
round up to sizeof(void*)

10.3. Type Objects 93

wheretp _basicsize , tp _itemsize andtp _dictoffset are taken from the type object, and

ob _size istaken fromthe instance. The absolute value is taken because long ints use thebigsiné

to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject _GetDictPtr() J)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype instances store the dictionary at a difference offset than the base type. Since the
dictionary is always found vigp _dictoffset , this should not be a problem.

When a type defined by a class statement has_rslots __ declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout apd ttiietoffset
is set to that slot’s offset.

When a type defined by a class statement has_alots __ declaration, the type inherits its
tp _dictoffset from its base type.

(Adding a slot named _dict __tothe__slots __ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just ikeakref __ though.)

initproc tp _init
An optional pointer to an instance initialization function.

This function corresponds to the init __() method of classes. Like_init __() , itis possible to
create an instance without calling.init __() , and it is possible to reinitialize an instance by calling its
__init __() method again.

The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; angs and kwdsarguments represent positional and
keyword arguments of the call to_init __() .

Thetp _init function, if notNULL, is called when an instance is created normally by calling its type,
after the type'sp _new function has returned an instance of the type. Iftfhe_ new function returns an
instance of some other type that is not a subtype of the original typg nit function is called; if

tp _newreturns an instance of a subtype of the original type, the subtype’mit is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 2R, thet of

the type of the object returned loy _new was always called, if ndtiULL.)

This field is inherited by subtypes.

allocfunc tp _alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, int nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should re-
turn a pointer to a block of memory of adequate length for the instance, suitably aligned, and initial-
ized to zeros, but wittob _refcnt set tol and ob_type set to the type argument. If the type’s

tp _itemsize is non-zero, the object'sb _size field should be initialized tamitemsand the length

of the allocated memory block should kg _basicsize + nitemgtp _itemsize , rounded up to

a multiple of sizeof(void*) ; otherwise,nitemsis not used and the length of the block should be

tp _basicsize

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bip _new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is always set RyType _GenericAlloc() , to force a standard heap
allocation strategy. That is also the recommended value for statically defined types.

newfunc tp _new
An optional pointer to an instance creation function.

94 Chapter 10. Object Implementation Support

If this function isNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being createdyrgis@ndkwdsarguments represent posi-
tional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose
tp _new function is called; it may be a subtype of that type (but not an unrelated type).

Thetp _new function should calsubtype>tp _alloc(subtype nitemg to allocate space for the ob-

ject, and then do only as much further initialization as is absolutely necessary. Initialization that can safely
be ignored or repeated should be placed inttheinit handler. A good rule of thumb is that for im-
mutable types, all initialization should take placepn_new, while for mutable types, most initialization
should be deferred tip _init

This field is inherited by subtypes, except it is not inherited by static types whoskase is NULL or
&PyBaseObject _Type. The latter exception is a precaution so that old extension types don't become
callable simply by being linked with Python 2.2.

destructor tp _free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signatestrisctor

void tp_free(PyObject *)

In Python 2.3 and beyond, its signaturdrisefunc

void tp_free(void *)

The only initializer that is compatible with both versions ByObject _Del , whose definition has suit-
ably adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-

ment); in the latter, this field is set to a deallocator suitable to mRydlype _GenericAlloc() and the
value of thePy_TPFLAGS HAVE _GCflag bit.

inquiry tp _is _gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is suf-
ficient to look at the object’s typetp _flags field, and check th&®y_TPFLAGS HAVE GCflag bit.
But some types have a mixture of statically and dynamically allocated instances, and the statically allocated

instances are not collectible. Such types should define this function; it should fefarra collectible
instance, an@ for a non-collectible instance. The signature is

int tp_is_gc(PyObject *self)
(The only example of this are types themselves. The metaByEype _Type, defines this function to
distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in
2.2.1 and later versions.)

PyObject* tp _bases
Tuple of base types.
This is set for types created by a class statement. It shoullLthé for statically defined types.
This field is not inherited.

PyObject* tp _mro

Tuple containing the expanded set of base types, starting with the type itself and endiogjedh , in
Method Resolution Order.

10.3. Type Objects 95

This field is not inherited; it is calculated fresh ByType _Ready() .

PyObject* tp _cache
Unused. Not inherited. Internal use only.

PyObject* tp _subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp _weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test m&sB&NTALLOCSIs defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes.

int tp _allocs
Number of allocations.

int tp _frees
Number of frees.

int tp _maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp _next
Pointer to the next type object with a non-zé¢po_allocs field.

10.4 Mapping Object Structures

PyMappingMethods
Structure used to hold pointers to the functions used to implement the mapping protocol for an extension

type.

10.5 Number Object Structures

PyNumberMethods
Structure used to hold pointers to the functions an extension type uses to implement the number protocol.

10.6 Sequence Object Structures

PySequenceMethods
Structure used to hold pointers to the functions which an object uses to implement the sequence protocol.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks aresegheehtsind are presumed to be
non-contiguous in memory.

If an object does not export the buffer interface, thentjts as _buffer ~member in thePyTypeObject
structure should bBULL Otherwise, thép _as _buffer will point to aPyBufferProcs structure.

Note: It is very important that youPyTypeObject structure use®y_TPFLAGS DEFAULTfor the value

of thetp _flags member rather thafl. This tells the Python runtime that yoRyBufferProcs structure
contains thebf _getcharbuffer slot. Older versions of Python did not have this member, so a hew Python
interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

96 Chapter 10. Object Implementation Support

The first slot isbf _getreadbuffer , of type getreadbufferproc . If this slot isNULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors should fill this
in, but callers should test that the slot contains a NaH-L value.

The next slot isf _getwritebuffer having typegetwritebufferproc . This slot may beNULL
if the object does not allow writing into its returned buffers.

The third slot isbf _getsegcount , with typegetsegcountproc . This slot must not b&lULLand is
used to inform the caller how many segments the object contains. Simple objects By&trasy _Type
andPyBuffer _Type objects contain a single segment.

The last slot isf _getcharbuffer , of type getcharbufferproc . This slot will only be present

if the Py_TPFLAGS HAVE_ GETCHARBUFFERag is present in thép _flags field of the object’s
PyTypeObject . Before using this slot, the caller should test whether it is present by using the
PyType _HasFeature() function. If present, it may b&ULL, indicating that the object’s contents
cannot be used &@shbit characters The slot function may also raise an error if the object’s contents cannot
be interpreted as 8-bit characters. For example, if the object is an array which is configured to hold float-
ing point values, an exception may be raised if a caller attempts tbfusgetcharbuffer to fetch a
sequence of 8-bit characters. This notion of exporting the internal buffers as “text” is used to distinguish
between objects that are binary in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies
that a buffer size oN does not mean there akecharacters present.

Py_TPFLAGS HAVE_ GETCHARBUFFER
Flag bit set in the type structure to indicate that lifie_ getcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or thdif thgetcharbuffer slot is
nonNULL

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a readable segment of the buffer. This function is allowed to raise an exception, in which
case it must retural . The segmentvhich is passed must be zero or positive, and strictly less than the
number of segments returned by tife_getsegcount slot function. On success, it returns the length of
the buffer memory, and settrptr to a pointer to that memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a writable memory bufferfiptrptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segeemhentMust return-1 and set an exception
on error.TypeError should be raised if the object only supports read-only buffers SystemError
should be raised whesegmenspecifies a segment that doesn't exist.

int (*getsegcountproc) (PyObject *self, int *lenp)
Return the number of memory segments which comprise the buftengfs notNULL, the implementation
must report the sum of the sizes (in bytes) of all segmentsanp The function cannot fail.

int (*getcharbufferproc) (PyObject *self, int segment, const char **ptrptr)
Return the size of the memory bufferpirptr for segmensegment* ptrptr is set to the memory buffer.

10.8 Supporting the Iterator Protocol

10.9 Supporting Cyclic Garbarge Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from
object types which are “containers” for other objects which may also be containers. Types which do not store
references to other objects, or which only store references to atomic types (such as numbers or strings), do not
need to provide any explicit support for garbage collection.

An example showing the use of these interfaces can be foun8upporting the Cycle Collectbin Extending
and Embedding the Python Interpreter

To create a container type, the _flags field of the type object must include tiy_TPFLAGS HAVE.GC
and provide an implementation of the _traverse handler. If instances of the type are mutablt a clear

10.8. Supporting the Iterator Protocol 97

implementation must also be provided.

Py_TPFLAGS HAVE.GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usinByObject _GC New() or
PyObject _GC VarNew() .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject _GC_Track()

TYPE PyObject _GC New TYPE, PyTypeObiject *type
Analogous tdPyObject _New() but for container objects with thiey_TPFLAGS HAVE _GCflag set.

TYPE PyObject _GC NewVar(TYPE, PyTypeObject *type, int sjze
Analogous toPyObject _NewVar() but for container objects with they _TPFLAGS HAVE GCflag
set.

PyVarObject * PyObject _GC_Resize (PyVarObject *op, in}
Resize an object allocated ByObject _NewVar() . Returns the resized objectNiJLL on failure.

void PyObject _GC Track (PyObject *op
Adds the objecbp to the set of container objects tracked by the collector. The collector can run at unex-
pected times so objects must be valid while being tracked. This should be called once all the fields followed
by thetp _traverse handler become valid, usually near the end of the constructor.

void _PyObject _GC. TRACK PyObject *op
A macro version oPyObject _GC Track() . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalida®g@bject _GC _UnTrack() must be called.

2. The object’s memory must be deallocated ustg@bject _GC_Del()

void PyObject _GC Del (PyObject *op
Releases memory allocated to an object uslg@bject _GC_New() or PyObject _GC NewVar() .

void PyObject _GC UnTrack (PyObject *op
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject _GC Track() can be called again on this object to add it back to the set of tracked objects.
The deallocatortp _dealloc handler) should call this for the object before any of the fields used by the
tp _traverse handler become invalid.

void _PyObject _GC UNTRACKPyODbject *op
A macro version oPyObject _GC._UnTrack() . Itshould not be used for extension modules.

Thetp _traverse handler accepts a function parameter of this type:

int (*visitproc)(PyObject *object, void *arg)
Type of the visitor function passed to ttge _traverse handler. The function should be called with an
object to traverse asbjectand the third parameter to the _traverse handler asrg.

Thetp _traverse handler must have the following type:

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must callvigie function for each object
directly contained byelf, with the parameters taisit being the contained object and thry value passed
to the handler. I¥isit returns a non-zero value then an error has occurred and that value should be returned
immediately.

Thetp _clear handler must be of thquiry type, orNULLIf the object is immutable.

98 Chapter 10. Object Implementation Support

int (*inquiry)(PyObject *self)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling
this method (don't just calPy _DECREF() on a reference). The collector will call this method if it detects
that this object is involved in a reference cycle.

10.9. Supporting Cyclic Garbarge Collection 99

100

APPENDIX
A

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain
this reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for the devel-
opers to contact you for additional information if needed. It is not possible to submit a bug report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group_id=5470). The bug tracker offers a Web form which allows pertinent
information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in
doing so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the
problem has already been fixed for the next release, or additional information is needed (in which case you are
welcome to provide it if you can!). To do this, search the bug database using the search box near the bottom of the
page.

If the problem you're reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group_id=5470). Select the “Submit a Bug” link at the top of the page to open the
bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details”
fields. For the summary, entewvaryshort description of the problem; less than ten words is good. In the Details
field, describe the problem in detail, including what you expected to happen and what did happen. Be sure to
include the version of Python you used, whether any extension modules were involved, and what hardware and
software platform you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into
a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem.
You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively

(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)
Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines

(http://www.mozilla.org/quality/bug-writing-guidelines.html)
Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

101

102

APPENDIX
B

History and License

B.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://mwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, lsge//www.python.org/psf/) was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&g//www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CwiI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
201 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
212 211 2002 PSF yes
213 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
223 222 2002-2003 PSF yes
2.3 222 2002-2003 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

B.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.4

103

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”"), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.4 software in source or binary form and
its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 2.4 alone or in any derivative version, provided, how-
ever, that PSF’s License Agreement and PSF's notice of copyright, i.e., “Copy@id001-2003 Python
Software Foundation; All Rights Reserved” are retained in Python 2.4 alone or in any derivative version
prepared by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.4.

. PSF is making Python 2.4 available to Licensee on an “AS 1S” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODI-
FYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.4, Licensee agrees to be bound by the terms and condi-
tions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

. BeOpen is making the Software available to Licensee on an “AS 1S” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

104

Appendix B. History and License

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of

California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an

office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-

sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI's License Agreement and CNRI's notice of copyright, i.e., “Copy@yi895-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http:/hdl.handle.net/1895.22/1013.”

. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, in-

cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,

by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-

ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect

to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python

1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

B.2.

Terms and conditions for accessing or otherwise using Python 105

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright(© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

106 Appendix B. History and License

Symbols

_Pylmport _FindExtension() , 21
_Pylmport _Fini() ,21
_Pylmport _FixupExtension() , 21
_Pylmport _Init() ,21
_PyObject _Del() ,81

_PyObject _GC.TRACK(), 98
_PyObject _GC_.UNTRACK(), 98
_PyObject _New() , 81

_PyObject _NewVar() , 81
_PyString _Resize() ,47
_PyTuple _Resize() ,57
_Py_NoneStruct , 82
_Py_c_diff) ,45

_Py_c_neg() ,45

_Py_c_pow() , 45

_Py_c_prod() ,45

_Py_c_quot() ,45

_Py_c_sum() , 45

__all __ (package variable), 20
__builtin __ (built-in module), 7, 67
__dict __ (module attribute), 63
__doc __ (module attribute), 63

__file __ (module attribute), 63
__import __() (built-in function), 20
__main __ (built-in module), 7, 67
__name__ (module attribute), 63
_ob_next (PyObject member), 86
_ob_prev (PyObject member), 86

A

abort() ,19

abs() (built-in function), 33
apply() (built-in function), 31
argv (in module sys), 70

B

buffer
object, 55
buffer interface, 55
BufferType (in module types), 56

C

calloc() ,77
classmethod() (built-in function), 84

INDEX

cleanup functions, 20
close() (in module os), 68
cmp() (built-in function), 30
CObject

object, 65
coerce() (built-in function), 35
compile() (built-in function), 20
complex number

object, 45
copyright (in module sys), 69

D

dictionary

object, 58
DictionaryType (in module types), 58
DictType (in module types), 58
divmod() (built-in function), 33

E

environment variables
PATH, 8
PYTHONDUMPREFS, 86
PYTHONHOME, 8
PYTHONPATH, 8
exec_prefix, 1
prefix, 1
EOFError (built-in exception), 61
errno ,71
exc _info() (in module sys), 5, 70
exc _traceback (in module sys), 5, 13
exc _type (in module sys), 5, 13
exc _value (in module sys), 5, 13
Exception (built-in exception), 17
exceptions (built-in module), 7
exec_prefix, 1
executable (in module sys), 69

exit() ,20
F
file
object, 60

FileType (in module types), 60
float() (built-in function), 35
floating point

object, 44
FloatType (in modules types), 44

107

fopen() ,61
free() ,77
freeze utility, 21

G

global interpreter lock, 70

H
hash() (built-in function), 31, 89

ihooks (standard module), 20
incr _item() ,6,7

instance

object, 61
int() (built-in function), 35
getcharbufferproc (C type), 97
getreadbufferproc (C type), 97
getsegcountproc (C type), 97
getwritebufferproc (C type), 97

inquiry (C type), 99
Py_tracefunc (C type), 74
traverseproc (C type), 98
visitproc (C type), 98
integer

object, 42
interpreter lock, 70
IntType (in modules types), 42

K

Keyboardinterrupt

L

len() (built-in function), 32, 35, 37, 57, 59
list

(built-in exception), 16

object, 57
ListType (in module types), 57
lock, interpreter, 70
long() (built-in function), 35
long integer

object, 43
LONGMAX 43, 44
LongType (in modules types), 43

M

main() , 68, 70
malloc() ,77
mapping

object, 58
METH.CLASS(data in), 84
METHKEYWORD@ata in), 83
METHNOARG%data in), 84
METHO(data in), 84
METHOLDARGS%data in), 84
METHSTATIC (datain), 84
METHVARARGS%data in), 83
method

object, 62
MethodType (in module types), 62
module

object, 62

search path, 8, 67, 69
modules (in module sys), 20, 67
ModuleType (in module types), 62

N

None
object, 42
numeric
object, 42

O

ob_refcnt (PyObject member), 86
ob_size (PyVarObject member), 86
ob _type (PyObject member), 86
object

buffer, 55

CObject, 65

complex number, 45

dictionary, 58

file, 60

floating point, 44

instance, 61

integer, 42

list, 57

long integer, 43

mapping, 58

method, 62

module, 62

None, 42

numeric, 42

sequence, 46

string, 46

tuple, 56

type, 2,41
OverflowError (built-in exception), 44

P

package variable

_all __,20
PATH, 8
path

module search, 8, 67, 69
path (in module sys), 8, 67, 69
platform (in module sys), 69
pow() (built-in function), 33, 34
prefix, 1
Py_AtExit() ,20
Py_BEGIN_ALLOWTHREADS70
Py_BEGIN_ALLOW.THREADSmacro), 73
Py_BLOCK THREADSmacro), 73
Py_BuildValue() , 26
Py_CompileString() , 10
Py_CompileString() , 10
Py_complex (C type), 45

108

Index

Py_DECREF(), 11

Py_DECREF(), 2
Py_ENDALLOWTHREADS70
Py_END ALLOW THREADSmacro), 73
Py_END.OF BUFFER56

Py_EndInterpreter() , 68
Py_eval _input , 10
Py_Exit() ,20

Py_FatalError() , 19
Py_FatalError() , 70

Py _FdlsiInteractive() , 19
Py_file _input , 10
Py_Finalize() , 67
Py_Finalize() , 20, 67, 68
Py_FindMethod() , 84

Py _GetBuildinfo() , 69
Py_GetCompiler() , 69
Py_GetCopyright() , 69
Py_GetExecPrefix() , 68
Py_GetExecPrefix() , 8
Py_GetPath() , 69
Py_GetPath() , 8,68
Py_GetPlatform() , 69
Py_GetPrefix() , 68
Py_GetPrefix() , 8
Py_GetProgramFullPath() , 69
Py_GetProgramFullPath() , 8
Py_GetProgramName() , 68
Py_GetVersion() ,69
Py_INCREF() , 11
Py_INCREF() , 2

Py _Initialize() , 67

Py _Initialize() , 7,68,72
Py _InitModule() , 82

Py _InitModule3() , 82
Py_lInitModule4() , 82

Py _Islnitialized() , 67
Py_lslInitialized() , 8
Py_Main() ,9
Py_NewiInterpreter() , 67
Py_None, 42

Py_PRINT_RAWS61
Py_SetProgramName() , 68
Py_SetProgramName() , 8, 67-69
Py_single _input , 10
Py_TPFLAGS BASETYPHdata in), 90
Py_TPFLAGS CHECKTYPE%datain), 90
Py_TPFLAGS DEFAULT(data in), 91
Py_TPFLAGS GC(data in), 90
Py_TPFLAGS HAVE CLASS(data in), 90
Py_TPFLAGS HAVE GC(data in), 91, 98
Py_TPFLAGS HAVE_GETCHARBUFFERIata in
), 90, 97
Py_TPFLAGS HAVE INPLACEOPSdata in), 90
Py_TPFLAGS HAVE_ITER (datain), 90
Py_TPFLAGS HAVE RICHCOMPARHKdata in),
90

Py_TPFLAGS HAVE_SEQUENCHN (data in),
90
Py_TPFLAGS HAVE WEAKREF®lata in), 90
Py_TPFLAGS HEAPTYPHdata in), 90
Py_TPFLAGS READY(data in), 90
Py_TPFLAGS READYING(data in), 91
Py_UNBLOCKTHREADSmacro), 73
Py_UNICODHE(C type), 48
Py_UNICODE.ISALNUM() , 49
Py_UNICODEISALPHA() , 49
Py_UNICODE.ISDECIMAL() , 49
Py_UNICODEISDIGIT() ,49
Py_UNICODE.ISLINEBREAK() , 49
Py_UNICODEISLOWER(), 49
Py_UNICODEISNUMERIC() , 49
Py_UNICODEISSPACE() , 49
Py_UNICODEISTITLE() , 49
Py_UNICODE.ISUPPER() , 49
Py_UNICODE.TODECIMAL(), 49
Py_UNICODETODIGIT() ,50
Py_UNICODE TOLOWER() 49
Py_UNICODE.TONUMERIC(), 50
Py_UNICODETOTITLE() , 49
Py_UNICODE.TOUPPER(), 49
Py_XDECREF(), 11
Py_XDECREF(), 7
Py_XINCREF() , 11
PyArg _Parse() , 26
PyArg _ParseTuple() , 26
PyArg _ParseTupleAndKeywords() , 26
PyArg _UnpackTuple() , 26
PyBuffer _Check() , 56
PyBuffer _FromMemory() , 56
PyBuffer _FromObject() ,56
PyBuffer _FromReadWriteMemory() , 56
PyBuffer _FromReadWriteObject() , 56
PyBuffer _New() , 56
PyBuffer _Type, 56

PyBufferObject (C type), 55
PyBufferProcs , 55
PyBufferProcs (C type), 96
PyCallable _Check() , 30
PyCalliter ~ _Check() , 63
PyCalliter _New() , 63
PyCalliter _Type, 63

PyCell _Check() , 66

PyCell _GET(), 66

PyCell _Get() , 66

PyCell _New() , 66

PyCell _SET() , 66

PyCell _Set() ,66

PyCell _Type, 66
PyCellObject (C type), 66
PyCFunction (C type), 83
PyCObiject (C type), 65
PyCObject _AsVoidPtr() , 66
PyCObject _Check() , 65
PyCObject _FromVoidPtr() ,65

Index

109

PyCObject _FromVoidPtrAndDesc()
PyCObject _GetDesc() , 66
PyComplex _AsCComplex() , 46
PyComplex _Check() , 45
PyComplex _CheckExact() , 45
PyComplex _FromCComplex() , 45
PyComplex _FromDoubles() , 46
PyComplex _ImagAsDouble() , 46
PyComplex _RealAsDouble() , 46
PyComplex _Type, 45
PyComplexObject (C type), 45
PyDescr _IsData() , 64
PyDescr _NewGetSet() , 64
PyDescr _NewMember() , 64
PyDescr _NewMethod() , 64
PyDescr _NewWrapper() , 64
PyDict _Check() , 58
PyDict _Clear() ,58
PyDict _Copy() , 59
PyDict _Delltem() ,59
PyDict _DelltemString()
PyDict _Getltem() ,59
PyDict _GetltemString()
PyDict _ltems() ,59
PyDict _Keys() , 59
PyDict _Merge() , 60
PyDict _MergeFromSeq2()
PyDict _New() , 58
PyDict _Next() ,59
PyDict _Setltem() ,59
PyDict _SetltemString()
PyDict _Size() ,59
PyDict _Type, 58
PyDict _Update() , 60
PyDict _Values() ,59
PyDictObject (C type), 58
PyDictProxy _New() , 58
PyErr _BadArgument() , 14
PyErr _BadInternalCall() , 15
PyErr _CheckSignals() , 15
PyErr _Clear() ,13
PyErr _Clear() ,5,7
PyErr _ExceptionMatches() , 13
PyErr _ExceptionMatches() 7
PyErr _Fetch() ,14
PyErr _Format() , 14
PyErr _GivenExceptionMatches()
PyErr _NewException() , 16
PyErr _NoMemory() , 14
PyErr _NormalizeException()
PyErr _Occurred() ,13
PyErr _Occurred() ,5
PyErr _Print() ,13
PyErr _Restore() ,14
PyErr _SeteExcFromWindowsErr() , 15
PyErr _SetExcFromWindowsErrWithFilename()
15
PyErr _SetFromErrno()

, 66

, 59

, 59

, 60

, 59

, 13

, 13

, 14

PyErr _SetFromErrnoWithFilename() , 15

PyErr _SetFromWindowsErr() , 15

PyErr _SetFromWindowsErrWithFilename()
15

PyErr _Setinterrupt() , 16

PyErr _SetNone() , 14

PyErr _SetObject() ,14

PyErr _SetString() , 14

PyErr _SetString() 5

PyErr _Warn() , 15

PyErr _WarnExplicit() , 15

PyErr _WriteUnraisable() , 16

PyEval _AcquireLock() ,72

PyEval _AcquireLock() ,67,71

PyEval _AcquireThread() , 12

PyEval _InitThreads() , 72

PyEval _InitThreads() , 67

PyEval _ReleaseLock() ,72

PyEval _Releaselock() ,67,71,72

PyEval _ReleaseThread() ,73

PyEval _ReleaseThread() ,72

PyEval _RestoreThread() ,73

PyEval _RestoreThread() ,71,72

PyEval _SaveThread() ,73

PyEval _SaveThread() ,71,72

PyEval _SetProfile() , 75

PyEval _SetTrace() ,75

PyFile _AsFile() ,61

PyFile _Check() , 60

PyFile _CheckExact() , 60

PyFile _Encoding() ,61

PyFile _FromFile() ,61

PyFile _FromString() ,61

PyFile _GetLine() ,61

PyFile _Name(), 61

PyFile _SetBufSize() ,61

PyFile _SoftSpace() ,61

PyFile _Type, 60

PyFile _WriteObject() , 61

PyFile _WriteString() , 61

PyFileObject (C type), 60

PyFloat _AS_DOUBLE(), 44

PyFloat _AsDouble() , 44

PyFloat _Check() , 44

PyFloat _CheckExact() ,44

PyFloat _FromDouble() , 44

PyFloat _FromString() ,44

PyFloat _Type, 44

PyFloatObject (C type), 44

Pylmport _AddModule() , 20

Pylmport _Appendinittab() , 21

Pylmport _Cleanup() ,21

Pylmport _ExecCodeModule() , 20

Pylmport _Extendlnittab() , 22

Pylmport _FrozenModules , 21

Pylmport _GetMagicNumber() ,21

Pylmport _GetModuleDict() ,21

Pylmport _Import() , 20

110

Index

Pylmport _ImportFrozenModule() , 21
Pylmport _ImportModule() , 20
Pylmport _ImportModuleEx() , 20
Pylmport _ReloadModule() , 20
Pylnstance _Check() , 61

Pylnstance _New() , 61

Pylnstance _NewRaw(), 62

Pylnstance _Type, 61

Pyint _AS_LONG(), 42

PyInt _AsLong() , 42

PyIint _AsUnsignedLongLongMask() , 43
PyInt _AsUnsignedLongMask() , 42
Pyint _Check() , 42

Pyint _CheckExact() ,42

PyInt _FromLong() , 42

Pyint _FromString() ,42

PyInt _GetMax() , 43

Pyint _Type, 42

PylInterpreterState (Ctype), 72
PylInterpreterState _Clear() ,73
PylnterpreterState _Delete() ,73
PylInterpreterState _Head() , 75
PylInterpreterState _New() , 73
PylnterpreterState _Next() ,75

PylInterpreterState _ThreadHead() ,75
PyIntObject (C type), 42

Pylter _Check() , 38

Pylter _Next() ,38

PyList _Append() , 58

PyList _AsTuple() ,58

PyList _Check() ,57

PyList _GETITEM() , 57

PyList _GET_SIZE() , 57

PyList _Getltem() ,57

PyList _Getltem() ,4

PyList _GetSlice() ,58

PyList _Insert() ,58

PyList _New() , 57

PyList _Reverse() ,58

PyList _SET_ITEM() , 58

PyList _Setltem() ,58

PyList _Setltem() ,3

PyList _SetSlice() ,58

PyList _Size() ,57

PyList _Sort() ,58

PyList _Type, 57

PyListObject (C type), 57

PyLong _AsDouble() , 44

PyLong _AsLong() , 44

PyLong _AsLongLong() ,44

PyLong _AsUnsignedLong() ,44
PyLong _AsUnsignedLongLong() , 44
PyLong _AsUnsignedLongLongMask() , 44
PyLong _AsUnsignedLongMask() , 44
PyLong _AsVoidPtr() ,44

PyLong _Check() , 43

PyLong _CheckExact() ,43

PyLong _FromDouble() , 43

PyLong _FromLong() , 43

PyLong _FromLongLong() , 43

PyLong _FromString() ,43

PyLong _FromUnicode() , 43

PyLong _FromUnsignedLong() , 43

PyLong _FromUnsignedLongLong() , 43

PyLong _FromVoidPtr() , 43

PyLong _Type, 43

PyLongObject (C type), 43

PyMapping _Check() , 37

PyMapping _Delltem() , 37

PyMapping _DelltemString() , 37

PyMapping _GetltemString() , 37

PyMapping _HasKey() , 37

PyMapping _HasKeyString() , 37

PyMapping _ltems() , 37

PyMapping _Keys() , 37

PyMapping _Length() , 37

PyMapping _SetltemString() , 37

PyMapping _Values() , 37

PyMappingMethods (C type), 96

PyMarshal _ReadlLastObjectFromFile() ,
22

PyMarshal _ReadlLongFromFile() , 22

PyMarshal _ReadObjectFromFile() , 22

PyMarshal _ReadObjectFromString() , 22
PyMarshal _ReadShortFromFile() , 22
PyMarshal _WriteLongToFile() , 22
PyMarshal _WriteObjectToFile() , 22
PyMarshal _WriteObjectToString() , 22

PyMemDel() ,78

PyMem.Free() ,78
PyMemMalloc() ,78
PyMemNew() , 78

PyMem Realloc() ,78

PyMem Resize() ,78

PyMethod _Check() , 62
PyMethod _Class() , 62
PyMethod _Function() , 62
PyMethod _GET_CLASS(), 62
PyMethod _GET_FUNCTION(), 62
PyMethod _GET_SELF() , 62
PyMethod _New() , 62

PyMethod _Self() , 62

PyMethod _Type, 62
PyMethodDef (C type), 83
PyModule _AddIntConstant() , 63
PyModule _AddObject() , 63
PyModule _AddStringConstant() , 63
PyModule _Check() , 62
PyModule _CheckExact() , 62
PyModule _GetDict() , 63
PyModule _GetFilename() , 63
PyModule _GetName() , 63
PyModule _New() , 63

PyModule _Type, 62
PyNumber_Absolute() , 33
PyNumber_Add() , 32

Index

111

PyNumber_And() , 33
PyNumber_Check() , 32
PyNumber_Coerce() , 35
PyNumber_Divide() , 32
PyNumber_Divmod() , 33
PyNumber_Float() , 35
PyNumber_FloorDivide() , 33
PyNumber_InPlaceAdd() ,34
PyNumber_InPlaceAnd() ,34

PyNumber _InPlaceDivide() , 34
PyNumber _InPlaceFloorDivide() , 34
PyNumber _InPlaceLshift() , 34
PyNumber_InPlaceMultiply() , 34

PyNumber_InPlaceOr() , 35
PyNumber_InPlacePower() , 34
PyNumber_InPlaceRemainder() , 34
PyNumber _InPlaceRshift() , 34
PyNumber _InPlaceSubtract() , 34
PyNumber_InPlaceTrueDivide() , 34
PyNumber_InPlaceXor() ,35
PyNumber_Int() ,35
PyNumber_Invert() ,33
PyNumber_Long() , 35

PyNumber _Lshift() , 33
PyNumber_Multiply() , 32
PyNumber_Negative() , 33
PyNumber_Or() , 34

PyNumber _Positive() , 33
PyNumber_Power() , 33
PyNumber_Remainder() , 33
PyNumber_Rshift() , 33
PyNumber_Subtract() , 32
PyNumber_TrueDivide() , 33
PyNumber_Xor() , 33
PyNumberMethods (C type), 96
PyObject (C type), 82

PyObject _AsCharBuffer() , 38
PyObject _AsFileDescriptor() , 32
PyObject _AsReadBuffer() ,38
PyObject _AsWriteBuffer() , 38
PyObject _Call() ,31

PyObject _CallFunction() , 31
PyObject _CallFunctionObjArgs() , 31
PyObject _CallMethod() ,31
PyObject _CallMethodObjArgs() , 31
PyObject _CallObject() , 31
PyObject _CheckReadBuffer() , 38
PyObject _Cmp(), 30

PyObject _Compare() , 30

PyObject _DEL() , 82

PyObject _Del() ,81

PyObject _DelAttr() ,29

PyObject _DelAttrString() , 29
PyObject _Delltem() , 32

PyObject _Dir() ,32

PyObject _GC.Del() ,98

PyObject _GC New() , 98

PyObject _GC NewVar() , 98

PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObiject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject

_GC Resize() ,98
_GC_Track() ,98
_GC.UnTrack() ,98
_GetAttr() ,29
_GetAttrString() , 29
_Getltem() ,32
_Getlter() ,32
_HasAttr() , 29
_HasAttrString() , 29
_Hash() , 31
_HEAD(macro), 82
_Init() ,81
_Initvar() , 81
_lIsInstance() , 30
_IsSubclass() , 30
_IsTrue() ,31
_Length() ,32
_NEW(), 81
_New() , 81
_NEWVAR(), 81
_NewVvar() , 81

_Not() ,31
_Print() ,29
_Repr() ,30

_RichCompare() , 29
_RichCompareBool() , 30
_SetAttr() ,29
_SetAttrString() , 29
_Setltem() , 32
_Size() ,32

_str() ,30

_Type() ,31
_TypeCheck() ,31
_Unicode() , 30
_VAR_HEAD(macro), 83

PyOS_AfterFork() , 19
PyOS_CheckStack() , 19
PyOS_GetlLastModificationTime() , 19
PyOS getsig() ,19

PyOS_ setsig() ,19

PyParser _SimpleParseFile() , 10
PyParser _SimpleParseString() , 9
PyProperty _Type, 64
PyRun_AnyFile() ,9

PyRun_File() ,10
PyRun_lInteractiveLoop() 9
PyRun_InteractiveOne() , 9
PyRun_SimpleFile() , 9
PyRun_SimpleString() , 9
PyRun_String() , 10

PySeqlter
PySeqlter
PySeqlter

_Check() , 63
_New() , 63
_Type, 63

PySequence _Check() , 35
PySequence _Concat() , 35
PySequence _Contains() , 36
PySequence _Count() , 36
PySequence _Delltem() , 36

112

Index

PySequence _DelSlice() , 36
PySequence _Fast() , 36
PySequence _Fast _GETITEM() , 36
PySequence _Fast _GET_SIZE() , 37
PySequence _Getltem() , 36
PySequence _Getltem() ,4
PySequence _GetSlice() , 36
PySequence _Index() , 36
PySequence _InPlaceConcat() , 35
PySequence _InPlaceRepeat() , 36
PySequence _ITEM() , 37
PySequence _Length() , 35
PySequence _List() ,36
PySequence _Repeat() , 35
PySequence _Setltem() , 36
PySequence _SetSlice() ,36
PySequence _Size() , 35
PySequence _Tuple() , 36
PySequenceMethods (C type), 96
PySlice _Check() , 64

PySlice _Getlndices() , 64
PySlice _GetlndicesEx() , 64
PySlice _New() , 64

PySlice _Type, 64

PyString _AS_STRING() , 47
PyString _AsDecodedObject() , 48
PyString _AsEncodedObject() , 48
PyString _AsString() , 47
PyString _AsStringAndSize() , 47
PyString _Check() , 46

PyString _CheckExact() , 46
PyString _Concat() ,47

PyString _ConcatAndDel() ,47
PyString _Decode() , 48

PyString _Encode() , 48

PyString _Format() , 48

PyString _FromFormat() , 46
PyString _FromFormatV() , 47
PyString _FromString() , 46
PyString _FromString() , 59
PyString _FromStringAndSize() , 46
PyString _GET_SIZE() , 47
PyString _InternFromsString() , 48
PyString _InterninPlace() , 48
PyString _Size() ,47

PyString _Type, 46

PyStringObject (C type), 46

PySys _SetArgv() ,70

PySys _SetArgv() , 8,67
PYTHONDUMPREFS, 86
PYTHONHOME, 8

PYTHONPATH, 8

PyThreadState , 70
PyThreadState (C type), 72
PyThreadState _Clear() ,73
PyThreadState _Delete() ,73
PyThreadState _Get() , 74
PyThreadState _GetDict() ,74

PyThreadState _New(), 73
PyThreadState _Next() , 75
PyThreadState _SetAsyncExc() ,74
PyThreadState _Swap() , 74
PyTrace _CALL, 74

PyTrace _EXCEPT74

PyTrace _LINE, 74

PyTrace _RETURN75

PyTuple _Check() , 56

PyTuple _CheckExact() ,56
PyTuple _GETITEM() , 57

PyTuple _GET_SIZE() ,57

PyTuple _Getltem() ,57

PyTuple _GetSlice() ,57

PyTuple _New() , 56

PyTuple _SET_ITEM() ,57

PyTuple _Setitem() ,57

PyTuple _Setltem() ,3

PyTuple _Size() ,56

PyTuple _Type, 56

PyTupleObject (C type), 56

PyType _Check() , 41

PyType _CheckExact() ,41

PyType _GenericAlloc() , 41
PyType _GenericNew() ,41

PyType _HasFeature() ,41

PyType _HasFeature() ,97

PyType _IS _GC(), 41

PyType _IsSubtype() ,41

PyType _Ready() , 42

PyType _Type, 41

PyTypeObject (C type), 41
PyUnicode _AS_DATA(), 49
PyUnicode _AS_UNICODE(), 49
PyUnicode _AsASCIIString() , 53
PyUnicode _AsCharmapString() ,53
PyUnicode _AsEncodedString() , 51
PyUnicode _AsLatin1String() , 53
PyUnicode _AsMBCSString() , 54

PyUnicode _AsRawUnicodeEscapeString()

52
PyUnicode _AsUnicode() ,50
PyUnicode _AsUnicodeEscapeString()

52
PyUnicode _AsUTF16String() ,52
PyUnicode _AsUTF8String() ,51
PyUnicode _AsWideChar() ,50
PyUnicode _Check() , 49
PyUnicode _CheckExact() ,49
PyUnicode _Compare() , 55
PyUnicode _Concat() , 54
PyUnicode _Contains() ,55
PyUnicode _Count() ,55
PyUnicode _Decode() , 51
PyUnicode _DecodeASCII() ,53
PyUnicode _DecodeCharmap() , 53
PyUnicode _Decodelatinl() ,52
PyUnicode _DecodeMBCS(), 54

Index

113

PyUnicode _DecodeRawUnicodeEscape()

52
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode

52
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode
PyUnicode

_DecodeUnicodeEscape() , 52

_DecodeUTF16() , 51
_DecodeUTF8() , 51
_Encode() ,51
_EncodeASCIl() ,53
_EncodeCharmap() , 53
_EncodelLatinl() ,53
_EncodeMBCS() , 54

_EncodeRawUnicodeEscape()

_EncodeUnicodeEscape() , 52

_EncodeUTF16() , 52
_EncodeUTF8() ,51
_Find() ,55
_Format() ,55
_FromEncodedObiject()
_FromObject() ,50
_FromUnicode() , 50
_FromWideChar() ,50
_GET_DATA_SIZE() , 49
_GET_SIZE() , 49
_GetSize() ,50
_Join() ,54
_Replace() ,55
_Split() ,54
_Splitlines() , 54
_Tailmatch() , 55
_Translate() , 54
_TranslateCharmap()
_Type, 48

PyUnicodeObject (C type), 48
PyVarObject (C type), 82

PyWeakref
PyWeakref
PyWeakref
PyWeakref
PyWeakref
PyWeakref
PyWeakref
PyWrapper

R

realloc()

_Check() , 65
_CheckProxy() ,65
_CheckRef() , 65
_GET_OBJECT(), 65
_GetObject() ,65
_NewProxy() , 65
_NewRef() , 65
_New() , 64

, 17

reload() (built-in function), 20
repr() (built-in function), 30, 88
rexec (standard module), 20

S

search

path, module, 8, 67, 69

sequence

object, 46

set _all()

setcheckinterval()

4

, 50

, 53

(in module sys), 70

signal (built-in module), 16
SliceType (in module types), 64
softspace (file attribute), 61
staticmethod() (built-in function), 84
stderr (in module sys), 67
stdin (in module sys), 67
stdout (in module sys), 67
str() (built-in function), 30
strerror() , 14
string

object, 46
StringType (in module types), 46
_frozen (Ctype), 21
_inittab (C type), 21
sum_list() ,4
sum_sequence() ,5,6
sys (built-in module), 7, 67
SystemError (built-in exception), 63

T

thread (built-in module), 72

tp _alloc (PyTypeObject member), 94

tp _allocs (PyTypeObject member), 96

tp _as _buffer (PyTypeObject member), 89
tp _base (PyTypeObject member), 93

tp _bases (PyTypeObject member), 95

tp _basicsize (PyTypeObject member), 87
tp _cache (PyTypeObject member), 96

tp _call (PyTypeObject member), 89

tp _clear (PyTypeObject member), 91

tp _compare (PyTypeObject member), 88
tp _dealloc (PyTypeObject member), 87

tp _descr _get (PyTypeObject member), 93
tp _descr _set (PyTypeObject member), 93
tp _dict (PyTypeObject member), 93

tp _dictoffset (PyTypeObject member), 93
tp _doc (PyTypeObject member), 91

tp _flags (PyTypeObject member), 89

tp _free (PyTypeObject member), 95

tp _frees (PyTypeObject member), 96

tp _getattr (PyTypeObject member), 88
tp _getattro (PyTypeObject member), 89
tp _getset (PyTypeObject member), 92

tp _hash (PyTypeObject member), 89

tp _init (PyTypeObject member), 94

tp _is _gc (PyTypeObject member), 95

tp _itemsize (PyTypeObject member), 87
tp _iter (PyTypeObject member), 92

tp _iternext (PyTypeObject member), 92
tp _maxalloc (PyTypeObject member), 96
tp _members (PyTypeObject member), 92

tp _methods (PyTypeObject member), 92
tp _mro (PyTypeObject member), 95

tp _name (PyTypeObject member), 86

tp _new (PyTypeObject member), 94

tp _next (PyTypeObject member), 96

setvbuf() ,61 tp _print (PyTypeObject member), 87
SIGINT , 16 tp _repr (PyTypeObject member), 88
114 Index

tp _richcompare (PyTypeObject member), 91
tp _setattr (PyTypeObject member), 88
tp _setattro (PyTypeObject member), 89
tp _str (PyTypeObject member), 89
tp _subclasses (PyTypeObject member), 96
tp _traverse (PyTypeObject member), 91
tp _weaklist (PyTypeObject member), 96
tp _weaklistoffset (PyTypeObject member),
91
tuple
object, 56
tuple() (built-in function), 36, 58
TupleType (in module types), 56
type
object, 2, 41
type() (built-in function), 31
TypeType (in module types), 41

U

ULONGMAX 44

unicode() (built-in function), 30
V

version (in module sys), 69, 70

Index

115

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	Reference Count Details

	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5 Utilities
	5.1 Operating System Utilities
	5.2 Process Control
	5.3 Importing Modules
	5.4 Data marshalling support
	5.5 Parsing arguments and building values

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Iterator Protocol
	6.6 Buffer Protocol

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Numeric Objects
	7.2.1 Plain Integer Objects
	7.2.2 Long Integer Objects
	7.2.3 Floating Point Objects
	7.2.4 Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	7.3 Sequence Objects
	7.3.1 String Objects
	7.3.2 Unicode Objects
	Built-in Codecs
	Methods and Slot Functions

	7.3.3 Buffer Objects
	7.3.4 Tuple Objects
	7.3.5 List Objects

	7.4 Mapping Objects
	7.4.1 Dictionary Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Instance Objects
	7.5.3 Method Objects
	7.5.4 Module Objects
	7.5.5 Iterator Objects
	7.5.6 Descriptor Objects
	7.5.7 Slice Objects
	7.5.8 Weak Reference Objects
	7.5.9 CObjects
	7.5.10 Cell Objects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock
	8.2 Profiling and Tracing
	8.3 Advanced Debugger Support

	9 Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10 Object Implementation Support
	10.1 Allocating Objects on the Heap
	10.2 Common Object Structures
	10.3 Type Objects
	10.4 Mapping Object Structures
	10.5 Number Object Structures
	10.6 Sequence Object Structures
	10.7 Buffer Object Structures
	10.8 Supporting the Iterator Protocol
	10.9 Supporting Cyclic Garbarge Collection

	A Reporting Bugs
	B History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python

	Index

