The Standard MdF Model

Ulrik Petersen

December 3, 2002

Contents
Introduction 2
On text-databases generally 2
2.1 Text-dominated databases, expoundedtext 2

2.2 Whatis adatabasemodel?
2.3 Demands on atextdatabasemodel

Gentle introduction to the MdF model 5
3.1 Keyconcepts e
3.2 Anexample

Monads 5
4.1 General
4.2 Application of monadstotextflows

Objects, object types 6
Features 7
Extending the basic framework 8
7.1 Introduction

7.2 Some special types: all_m,any m,pow . m 8
7.3 Linear ordering of objectspertype 9

7.4 Ordinal of an object, objectid

7.5 Part of,overlap
751 Partof
752 OQverlap

7.6 Covered by and buildablefrom
7.6.1 Coveredby
7.6.2 Buildablefrom oL oL

(63}

(62}

7.7 CONSecutive, gapsS . . . v . v v e e e e e 11

7.7.1 Consecutive 11
7.7.2 GapS . . . o 12
7.8 Border, separated,inside 31
7.8.1 Border 13
7.8.2 Separated 13
7.83 Inside 13
8 Conclusion 13

1 Introduction

The MdF model was developed by Crist-Jan Doedens in his 18@4dssertation. It
is a database model which is exceptionally well suited tarsgdinguistic analyzes of
text. The MdF model gives a high-level view of text databasdgere a text database
is viewed as text plus information about that text. The MdRleias mathematically
clean, simple, intuitive, and elegant, which makes it weitesd to conceptualization
of solutions to problems which can be solved by a text dawbas

This article gives an introduction to the standard MdF modéle introduction is
based heavily on Chapters 2 and 3 in Doedens’ book, and feltbessame structure.

The bibliographic information for Doedens’ PhD disseuatis:

Doedens, Crist-Jan [Christianus Franciscus Joann&ejt Databases.
One Database Model and Several Retrieval Languages. Language and
Computers, Number 14. Amsterdam and Atlanta, GA: Editionddpi
Amsterdam, 1994. Extent: xii + 314 pages. ISBN: 90-5183-729

2 On text-databases generally

2.1 Text-dominated databases, expounded text

Two concepts are a key in understanding the state of the #ekirdatabases. | here
give two quotes from Doedens:

Text-dominated databases are “collections of data, predortly composed of
characters, in which we can perceive structure” (p. 18)sThthe current viewpoint
on databases of text.

Expounded text is “An interpreted text, i.e. a combinatibteat and information
about this text, stored in a computer, and structured for epdate and access” (p. 19).
The MdF model embodies the idea of expounded text.

2.2 What is a database model?
Doedens definesd@data modelor database modehs

“a toolbox of concepts which can be used to describe the gy the
computer of data in certain domain(s). The concepts shdldd &asy
formulation by humans of the structuring and handling ofdaga in the
domain(s). The concepts can be grouped as follows:

e The data structures supported by the model

e The access language. This language, or set of languagdd siiow
the definition of the structure and types of the data and atteation,
insertion, change, deletion and retrieval of the data.2®).

The MdF model is not a full database model, in that it does petify an access
language, but only the data structures supported by the Imbhie, a database model
without its access language component, is what Doederssastiitic database model

2.3 Demands on a text database model
Doedens says:

“The fundamental requirement for a text database modebhisitishould
be able to support the structural description of a text an@sisociated
annotations.” (p. 25)

He then lists thirteen demands which he perceives shouldtlmndext database mod-
els:
D1. Objects: We should be able to identify separate parts ofite text.

This can be realized with instances of the concept of ohjects

D2. Objects are unique: Each object should be uniquely iderifiable.
Otherwise, we may not know what we are talking about.

D3. Objects are independent: Each object in the database shiul exist without
direct reference to other objects.

The advantage of having this is that we can have the best oivovtals: Inde-
pendence and dependence, isolation and referentialigyinbependence comes
from D3 being met, and the dependence can arise through Ddedg met.

D4. Object types: We need ‘object types’: we should be able tassign the same
generic name to like objects.

For example, we would like to be able to identify certain pafta book stored
in a text database as “paragraphs”, other parts of a bookhapters”, and other
parts as “pages”.

D5. Multiple hierarchies: It should be possible to have diferent hierarchies of
types.

For example, we might have a hierarchy of types which fornxautd hierarchy
(‘character’, ‘word’, ‘line’, ‘page’, ‘book’), and a hierahy of types which form
a logical hierarchy (‘word’, ‘sentence’, ‘paragraph’, abter’).

D6. Hierarchies can share types:
See D5 for a useful example.

D7. Object features: We should be able to assign features andlues for these
features to objects

D8. Accommodation for variations in the surface text: E.g. ariations in spelling
should be attributable to the same words in the surface text.

D9. Overlapping objects: We need objects of the same type tetable to overlap.

For example, to describe recursivity in linguistic phenoaeTake for example
the string of words, ‘A noun phrase and a conjunction phras®w do we
analyze this? As two noun phrases (“A noun phrase” and “aucmijon phrase”)
conjoined by a conjunction (“and”), or as one compound nduiage (the whole
thing)? We want to be able to represent both choices. Ovargmbjects of the
same type can help us in doing this.

D10. Gaps: We need objects with ‘gaps’.

For example to describe clauses which are discontiguous,“dsehn, who was
having a cow, freaked out.”, where “John ... freaked out” idiscontiguous
clause.

So far, the demands have dealt with the data-structurespposuthe model. The
following demands reflect the demands which a full model (onehich there is also
an access language) must meet:

D11. Type language: We need a type language in which we can sjfg object
types and the types of their features.

D12. Data language: We need a strongly typed data language mhich we can
specify the creation, insertion, change, deletion, and reeval of data.

D13. Structural relations between types: It should be posbie to specify standard
structural relations between objects of different types.

None of the text database models available today satisfese th3 demands. The
MdF model satisfies D1-D10. In contrast, SGML does not, antheedo any of its
derivatives, e.g.. XML.

3 Gentle introduction to the MdF model

3.1 Key concepts

The MdF model has four key concepts:

1. Monads: These are the basic building blocks of the da¢abHsey are simply
integers. Monads are ordered relative to each other, satlastring of monads
emerges.

2. Objects: Objects are made of monads. An object is a set nad®

3. Object types: Objects are grouped in types. An object tlgtermines what
features an object has.

4. Features: A feature is a function on objects. A featuregsakn object as its
argument and returns some value usually based on that object

3.2 Anexample

An example of an MdF database can be seen in figure 1 on thevfoligpage. It has
five object types: Word, Phrase, Clause _atom, Clause, artdi8®. Object type Word
has two features: surface, and part_of speech. ObjectRiipgse has one feature:
phrase_type. Object types Clause_atom, Clause, and $ertiane no features. The
first Phrase object consists of the set of mongid2}, the third of the set of monads
{4}, and the fourth of the set of monadls, 6, 7}. The first Clause object consists of
the monadq 1, 2,8,9}. Note that the first Word objecbnsists of the set of monads
{1}, andisnot monad 1, and likewise with the rest of the Word objects.

4 Monads

4.1 General

The MdF model was developed for text databases, but can bdarsgtoring anything
that is linear in nature, e.g., DNA sequences. The backbbae MdF database is a
linear string of minimal, indivisible elements, called naals. The precise nature of
the entities which the monads represent is of no importam¢kee model. The only
thing that matters is the relative ordering of the monads.

A monad is simply an integer. It represents the rank numb#rarstring of mon-
ads, starting from 1. Since monads are integers, we can afighe usual relational
and arithmetic operators to them. For example, if we haveadsnandb, we can test
whethera < b, a = b, ora > b. Or we can test whether+ 3 = b.

1 2 3 4 5 6 7 8 9

Word 1 2 3 4 5 6 7 8 9

surface The door, | which opened | towards

=

he East, | was | blue.

part_of_speech | defart. | noun | rel.pron.| verb prep. defart. | noun| verb | adject.

Phrase 1 2 3

phrase_type NP NP VP NP VP AP

Phrase

phrase_type

Clause_atom 1 2 3
Clause 1 2 1
Sentence 1

Figure 1: MdF example

4.2 Application of monads to text flows

In everyday thinking about text, any given text is concelited as a one-dimensional
string. The text may be laid out on a two-dimensional mediem., paper, but there is
still only one string. The elements in this string have areardy called theeading or-
der. For example, the English reading-order is left-to-ridimeg-by-line, downwards.
The Arabic reading-order is different, and the Japanesgirgaorder is different yet
again. From the point of view of the MdF model, the readindeoris dictated by the
monads.

The MdF model has no concept of parallel or unrelated texis]@ug., footnotes or
margin notes vs. the main text. Fortunately, this is not &ler, since the object types
allow us to direct attention to any text flow at will. For examghe implementer of an
MdF database might decide to intertwine the main text andab#otes. The text is
then called “footnote” or “main text” simply by defining amriate object types and
defining its objects appropriately. For an MdF database setleral books, it might be
more intuitive to place each book after the other, defininglgect type called “book”
and defining its objects appropriately.

5 Objects, object types

An MdF object is a set of monads. The monads in this set neetdenabntiguous.
This is a great advantage, since it allows us to have objdattsyaps.

Objects are grouped in types. For a sample list of objectstyg@ch might occur
in an MdF database, look at table 1.

It is an important characteristic of objects that no two otgeof the same object

e testament
e book

e chapter

e verse

e word

e phrase

e clause

e sentence

Table 1: Sample Object types

type may consist of the same monads, i.e., there must notdeljects of the same
object type for which there is set equality between the tvie gemonads. The reason
for this restriction is that it gives us a simple and cleatetion for what different
objects are: An object is unique in its set of monads. On therdtand, two objects
of different types may consist of the same monads. And tweatbjof the same type
may share monads, so long as their sets of monads are natalent

Note that objects do not consist of other objects. Insteajécts consist of monads.
This is a great advantage, since it allows us to specify pialtiierarchies.

The fact that objects are sets of monads gives rise to a riaf descriptive terms,
which can all be formulated in terms of the basic operatorsats, such as set equality,
the subset relation, set intersection, set union, and tterber of” relation. Also, the
fact that there is an ordering;, on the monads gives rise to a number of interesting
properties. We shall return to these properties in sectiotn@n discussing concepts
related to the MdF model.

6 Features

A feature is a function taking one argument: An object. Thgcitype of an object
determines what features the object has. The domain (typegaiment) of a feature
function is the set of objects of a given object type. The codio (type of return
value) of a feature function can be anything: The MdF modét po restrictions on
the codomain. This allows the implementor to implement kimgt at all which he or
she might feel should be a feature. For a list of sample featwhich might be present
in an MdF database, look at table 2.

In particular, the codomain of a feature can be another fondaking other argu-

| Object type| Feature name | Feature function
book book _name maps a book object to its name
book book_number | maps a book object to its number
chapter chapter_number maps a chapter to its number
word lemma maps a word to its lemma
word Friberg_tag maps a word to its Friberg grammar tag
word part_of _speech| maps a word to its part of speech
word case maps a word to its case (if applicable)
word gender maps a word to its gender (if applicable)
word number maps a word to its number (if applicable)
phrase phrase_type maps a phrase to its type (e.g., VP, NP)
phrase arthricity maps a phrase to its status as being arthrous
phrase function maps a phrase to its function (e.g., Subj, Ob))
phrase determinedness maps a phrase to its status as determined or not
clause clause_type maps a clause to its clause type
clause function maps a clause to its function

Table 2: Sample features

ments, thereby in effect producing a feature with arguments

Features can be partial functions, i.e., there can be abfectwhich a feature’s
value is not defined.

There is no such thing as a “genuine” feature. All featurescansidered to have
equal status from the point of view of the MdF database. Fammpte, the feature
returning the surface of a word has the same status as adehaiameturns the sum of
the monads in its argument object.

7 Extending the basic framework

7.1 Introduction

This section is almost a duplicate of section 3.6 in Doedéogk, but leaving out
some explanations, examples, justifications, and a fewegiaaevhich are irrelevant to
the understanding of EMdF.

Throughout this section, we will refer to figure 1 on page 6.

7.2 Some special types: all_m, any_m, pow_m

Any MdF database implicitly defines the object types all_ny, an, and pow_m. The
reason for this is that it is convenient when talking abouf\idtabases.

All_m is the object type which has just one object: The onesigiimg of all mon-
ads in the database.

Any_m is the object type which has for each monad one objattistng of that
monad.

Pow_m is the object type which has a member for each membéegidwer-set
of the monads.

None of these three special object types has any applieagieaific features.

7.3 Linear ordering of objects per type

The linear ordering of objects per type is based on a ‘lexiaplgic’ ordering of the
monads. This is done using the smallest monad as sort kéys [jives a tie, we go on
to the next smallest, the next smallest, and so on. If at amt pbjectO, has a monad
which objectO; does not, then objec?, is stipulated to have the smaller ordinal of
the two. For any object typ&, the ordering relation within the type is denotegt.
Thus, for example, if we have an object type then these relations hold:

{1} <r {1,2}

{17 3} <r {17 2}

{1,3,4,5} <r {1,3,4,5,6}

{1,2,3,4,5,6,7} <r {2}

{3.4} <r {5.6}

7.4 Ordinal of an object, object id

The linear ordering of objects per type can be used to assijnads to objects of a
given type. We just assign the ordinal 1 to the first objech&linear ordering, and go
on from there.

This means that objects can be identified by their type plas tirdinal. Alter-
natively, since objects are unique in their monads, theybeaidentified by their type
plus their monads. Both ways of identifying an object can $eful.

When identifying objects by their type plus their ordindle resulting id is called
anobject id_o. For example, objects of type might be called’-1, 7-2, T-45, etc.

When identifying objects by their type plus their monads, tbsulting id is called
anobject id_m. For example, objects of tyge might be called™-{1,2,3,5}, T-{4},
etc. Object id_m’s are most useful for the three specialatlijpes, all_m, any_m,
and pow_m, since they are specifically defined in terms of mi®nd here is also a
practical reason for the usefulness of object id_m’s: If \areeha database of 138,019
monads, the object id_o’s of the pow_m object type range ftoim2!3%°19 which
would take on the order of38,019 bits to implement - something which is clearly
intractable.

The number of words in the Greek New Testament as publishixgiNestle-Alan@7" edition is
138,019.

7.5 Part_of, overlap
7.5.1 Part_of

The subset relation gives rise to a relation between objebish is quite crucial in
building hierarchies. Take two object3; andO-.

O, part_Ong <— 07 C0O,

Thus if the monads of); are all in the set of monads comprising, thenO; is
part_ofOs.

In our example figure on page 6, Phrase-5 is part_of PhraBérése-2 is part_of
Clause_atom-2.

7.5.2 Overlap

Objects can share monads. The notion of overlap formalleesdea. This notion is

expressed in terms of the set intersection operator. Ifrtteggection of the monads of
two objects is non-empty, then they share monads, and asetlaulapping. Take two

objects,0; andO..

O, overlaps withD, <= O, N0y # 0

In our example figure on page 6, Phrase-5 overlaps with PldraBdrase-5 does
not overlap with Phrase-6. Clause_atom_2 overlaps witheBen-1.

Object types can also said to be overlapping or non-oveirigpp

An object type is overlappingif and only if some of its objects overlap.

An object type is non-overlappingif and only if it is not overlapping.

In our example figure on page 6, only the Phrase object typedadapping. The
rest of the object types are non-overlapping.

It could be made part of the type-system of a full databaseeibased on the
MdF model that one could specify that a given object type waslapping or non-
overlapping, and, in the latter case, uphold this condteaitomatically when attempt-
ing to add objects of this type.

7.6 Covered by and buildable from

In some applications, we want certain object types to fornmeeahchy. For example,
sentences may be formed from words, and paragraphs mayrbheddrom sentences.

Since objects are made of monads, not other objects, we naeshsay of specify-
ing hierarchies. This is done using the notions coveredniybaildable_from. These
notions are, in the MdF model, only extensional in natuee, only by inspection can
we decide whether an object type is covered_by or buildétds another. It could,
however, be made part of the type system in a full databasehbaged on the MdF
model, such that constraints could be upheld when addingletidg objects.

Despite their names, these two notions are not oppositeaatf ether. Rather,
buildable_from expresses the same as covered_by, onlyawittdditional constraint.

10

7.6.1 Covered by

An object type Ty, iS covered_by object typeli,,, if and only if the union of all
the monads in all the objects of the set of objectdigf,, has set equality with the
union of all the monads in all the objects of the set of objett$.,,, AND for all
objectsOy,;gn Of Thign there exists a set of objectsof 73, such that the monads of the
union of all the objects ity are the same as the monad<uf,,, AND for all objects
Oow Of Tioy, it is the case that there exists exactly one objggt of i, such that
Olow part_of Ohg-

Note that the name ‘covered_by’ is slightly counter-iritt It is the larger that is
covered by the smaller, not the smaller that has the largarcasopy over it.

Doedens says in his book (p. 70) that covered_by inducestelpardering on
objects types. This is not true: As a counterexample, tHevihg setup makes cov-
ered_by fail to be antisymmetric: Suppose that we have an Nat&base with just
three monads and just two object-typ&%,and7;, and suppose that bofii andT;
have only one object: The one consisting of the monddg, 3}. ThenT; is clearly
covered_byl,, andTs is clearly covered_b¥:, yetT) # Ts.

In our example figure on page 6, Phrase is covered_by Phrd&¥@nd, Clause_atom
is covered_by Clause_atom, Phrase and Word, and Clausesiedo by Clause, Clause_atom,
Phrase, and Word. Sentence is covered_by everything.

7.6.2 Buildable from

We sometimes want to say something that is a little strorigar that two object types
are in a covered_by relationship. We sometimes want to fyptwt the two object
types are non-overlapping as well.

An object type Ty;.1 is buildable_from object type T, if and only if Tj;g, IS
covered_Dbyli.,, AND bothTi;., and7j,, are non-overlapping.

Doedens notes in his book that buildable_from induces agbartlering on object
types that are non-overlapping. This is, of course, not, siree covered_by is not a
partial order.

In our example figure on page 6, the only object type that isbndtable_from
something is Phrase, since it is overlapping.

7.7 Consecutive, gaps
7.7.1 Consecutive

Basically, two objects are consecutive if they follow eatleo in a neat row without
any gaps in between. This is the heart and soul of text repiratsen.

However, sometimes it is handy to exclude certain partsetittabase from con-
sideration. For example, in our example figure on page 6, wewh to concentrate
on “The door, ..., was blue” as embodied in Clause-1. We saty ttas blue” is con-

11

secutive to “The door,” with respect to the set of objectsstibuting Clause-1. We call
Clause-1 the “Universe”.

In order to formally define the notion of consecutive, we firséd a definition of a
range:

Definition: A range of monads is denoted by. b, and has the following meaning: If
b < a, then the range is empty. 4f> a, then the range denotes the set of monads
starting atz and including all monads up to and includibhg

For example, £..3” denotes the sefl, 2, 3}, while “3..2” denoted).

Definition: A set ofn monads,M, wheren > 2, is consecutive with respect to a set
of monads//, if, when ordering the elements af according to <’, such that
my < ...<myforalli,1 <i<n-—1,itholdsthatm;+1..m; 1 —1)NU = 0.

Definition: A set ofn objects,S, wheren > 2, is consecutive with respect to a set
of monads,U, if the objects can be ordered 65, ..., O, such that for all,
1 <i < n—1,itholds either thatO, = 0V O,,; = () or (i.e., exclusive or) the
set consisting of the last monad@f and the first monad ab, . is consecutive
with respect td/.

7.7.2 Gaps

As we have seen, objects need not consist of a contiguou sifimonads. For
example, in our example figure 1 on page 6, Clause-1 condisfBhe door, was
blue.”. There is a gap in Clause-1 with respect to “The dodrictv opened towards
the East, was blue.”.

An object is said to have gaps if its monads are not consexuiihe monads of
a gap in an object are not part_of the object. Furthermoesy, éine not outside of the
object, i.e., all of the monads in a gap in an objécare both> the first monad of
O and< the last monad o). Gaps are always “maximal”, i.e., we group as many
monads as possible into a gap.

Definition: A gap in an objecO relative to a set of monads is a set of monad<{,
such that:

. H +# () AND

. H is consecutive with respect td AND

1

2

3. = (H overlaps withO) AND

4. Yh; € H.hy > O.first() A h; < O.last() AND
5

.—dH''H'"# HANH C H' AN H' gap inO relative toU (i.e., H is maximal)

whereO. first() andO.last() refer to the first and last monad ©6f respectively.

12

7.8 Border, separated, inside
7.8.1 Border

An object always has a first and a last monad (which is a comseguof the well-
formedness axiom for natural numbers). The first monad ofgecbis called itdeft
border, and the last monad of an object is calledriggt border . Together, the left
border and the right border of an object constitutébitsders. Two notions that can
be defined in terms of the borders of objects are “separatadi“iaside”.

In our example figure on page 6, the left border of Phrase-4 en8 its right
border is 7. The left border of Phrase-2 is the same as it loigialer, namely 3. The
left border of Clause-1 is 1, and its right border is 9.

7.8.2 Separated

Two objects are separated if and only if the right border ad ohthe objects is < the
left border of the other. Thus even if we add the gaps in theatbjto the objects, they
still do not overlap.

In our example figure on page 6, Word-3 and Phrase-3 are segaRhrase-3 and
Phrase-4 are separated. Clause-1 and Clausertseparated.

7.8.3 Inside

An objectO; is insideO, if and only if the left border o), is < the left border of
O, and the right border of), is > the right border ofD,. Note that, even though an
object is inside another object, they need not overlapgesitgects may have gaps.

In our example figure on page 6, Phrase-5 is inside Phrasdais€2 is inside
Clause-1. Word-4 is inside Clause-2.

8 Conclusion

In this article, we have presented, in condensed and alatittgen, Doedens’ work
as it applies to demands on text databases and to the MdF rnteelél Not much
has been original in this article. We have touched upondextinated databases and
expounded text, upon what constitutes a database modeljpanmdDoedens’ thirteen
demands on a text database model. We have given a gentlduntian to the MdF
model, followed by in-depth discussions of the four key apts of the MdF model.
We have then defined a lot of useful concepts in relation tddhebasic concepts in
the MdF model.

13

