CG(Cg) CgTopics CG(Cg)

NAME
Cg — A multi-platform, multi-API C-based programming language for GPUs

DESCRIPTION
Cg is a high-led programming language designed to compile to the instruction sets of the programmable
portions of GPUs.While Cg programs ha geat flexibility in the way that tlyeexpress the computations
they perform, the inputs, outputs, and basic resourgesahle to those programs are dictated by where
they execute in the graphics pipeline. Other documents descrilve thowrite Cg programs.This
document describes the library that application programs use to interact with Cg proghasnkbrary
and its associatesPl is referred to as the Cg runtime.

DOCUMENTAT ION ORGANIZATION
Cg Topics
Cg Language Specification
Cg Commands
Cg Core RuntimaPI
Cg OpenGL RuntimaP!I
Cg Direct3D11 RuntimaP!I
Cg Direct3D10 RuntimaP!I
Cg Direct3D9 RuntimeP!|
Cg Direct3D8 RuntimePI
Cg Profiles
Cg Standard Libary Routines
CgFX States

SEE ALSO
Cg_language, cgc, cgCreateContext, cgDestroyContext

perl v5.10.0 Cg Toolkit 3.0 1

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

Cg 1.2 RUNTIME API ADDITIONS
Version 1.2 of the Cg runtime adds a number af gapabilities to the existing set of functionality from
previous releases. Thesewéeatures include functionality that neak possible to write programs that can
run more efficiently on th&PU, techniques that help hide some of the inherent limitations of some Cg
profiles on thesPU, and entrypoints that supportwéanguage functionality in the Cg 1.2 release.

Parameter Literalization

The 1.2 Cg runtime mals it possible to denote some of the parameters to a program as havieg a fix
constant alue. Thisfeature can lead to substantially more efficient programs in a number of Eases.
example, a program might & a bock of code that implements functionality that is only used some of the
time:

float4 main(uniform float enableDazzle, ...) : COLOR {
if (enableDazzle) {
/I do lengthy computation
}
else {
/l do basic computation
}
}

Some hardware profiles damlirectly support branching (this includes all of the fragment program profiles
supported in this release), andréd handle code lik the program by ééctively following both sides of
theif() test. (The still compute the correct result in the end, just not very efficiently.)

However, if the ‘enableDazzlé’'parameter is marked as a literal parameter analwe\s provided for it,
the compiler can generate an optimized version of the program with the knowledgrabfeDazzl€s
value, just generatingsPU code for one of the tw cases. Thiscan lead to substantial performance
improvments. Thisfeature also makes it easier to write general purpose shaders with aawéatg of
supported functionalitywhile only paying the runtime cost for the functionality provided.

This feature is also useful for parameters with numeasicies. Br example, consider a shader that
implements a diffuse reflection model:
float4 main(uniform float3 lightPos, uniform float3 lightColor,

uniform float3 Kd, float3 pos : TEXCOORDO,
float3 normal : TEXCOORD1) : COLOR

{
}

If the “lightColor” and “Kd’’ parameters are set to literals, it is possible for the compiler to compute the
product “Kd * lightColor” once, rather than once each time the progresouges.

return Kd*lightColor*max(0., dot(normalize(lightPos—pos), normal));

Given a parameter handle, tregSetParameterVariability@ntrypoint sets the variability of a parameter:
void cgSetParameterVariability(CGparameter param, CGenum vary);

To st it to a literal parametghe CG_LITERAL enumerant should be passed as the second parameter.

After a parameter has set to be a literal, the following routines should be used to set the pasatoeter’

perl v5.10.0 Cg Toolkit 3.0 2

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

void cgSetParameterlf(CGparameter param, float x);

void cgSetParameter2f(CGparameter param, float x, float y);

void cgSetParameter3f(CGparameter param, float x, float y, float z);

void cgSetParameter4f(CGparameter param, float x, float y, float z,
float w);

void cgSetParameterld(CGparameter param, double Xx);

void cgSetParameter2d(CGparameter param, double X, double y);

void cgSetParameter3d(CGparameter param, double X, double y, double z);

void cgSetParameter4d(CGparameter param, double X, double y, double z,
double w);

void cgSetParameterlfv(CGparameter param, const float *v);
void cgSetParameter2fv(CGparameter param, const float *v);
void cgSetParameter3fv(CGparameter param, const float *v);
void cgSetParameter4fv(CGparameter param, const float *v);
void cgSetParameterldv(CGparameter param, const double *v);
void cgSetParameter2dv(CGparameter param, const double *v);
void cgSetParameter3dv(CGparameter param, const double *v);
void cgSetParameter4dv(CGparameter param, const double *v);

void cgSetMatrixParameterdr(CGparameter param, const double *matrix);
void cgSetMatrixParameterfr(CGparameter param, const float *matrix);
void cgSetMatrixParameterdc(CGparameter param, const double *matrix);
void cgSetMatrixParameterfc(CGparameter param, const float *matrix);

After a parameter has been set to be a literal, or afterathe of a literal parameter has been changed, the
program must be compiled and loaded into @, regadless of whether it had already been compiled.
This issue is discussed further in the section on program recompilation belo

Array Size Specification

The Cg 1.2 language also adds support ‘forsized array’variables; programs can be written togak
parameters that are arrays with an indeterminate 3ize.actual size of these arrays is then set via the Cg
runtime. Thidfeature is useful for writing general-purpose shaders with a minimal performance penalty.

For example, consider a shader that computes shadiven gome number of light sources. If the
information about each light source is stored in a struct Lightinfo, the shader might be written as:

float4 main(Lightinfo lights][], ...) : COLOR

{
float4 color = float4(0,0,0,1);
for (i = 0; i < lights.length; ++i) {
/[add lightsJi]'s contribution to color
return color;
}

The runtime can then be used to set the length of the lights[] array (and then to initialize the values of the
Lightinfo structures.)As with literal parameters, the program must be recompiled and reloaded after a
parametes aray size is set or changes.

These tw entrypoints set the size of an unsized array parameter referenced byethpagameter handle.
To st the size of a multidimensional unsized arelyof the dimensions’ sizes must be set simultanegusly
by providing them all via the pointer to an array of integer values.

void cgSetArraySize(CGparameter param, int size);
void cgSetMultiDimArraySize(CGparameter param, const int *sizes);

XXX what happens if these are called with an already-sized axay??

perl v5.10.0 Cg Toolkit 3.0 3

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

To get the size of an array paramethae cgGetArraySize(@ntrypoint can be used.
int cgGetArraySize(CGparameter param, int dimension);

Program Recompilation at Runtime

The Cg 1.2 runtime environment will aloautomatic and manual recompilation of program&is
functionality is useful for multiple reasons :

e Changing variability of parameters
Paameters may be changed from uniform variability to literal variability as described abo
e Changing value of literal parameters

Changing the value of a literal parameter will require recompilation sinceathe i¢ used at compile
time.

* Resizing parameter arrays

Changing the length of a parameter array may require recompilation depending on the capabilities of
the profile of the program.

e Binding sub-shader parameters

Sub-shader parameters are structures tratoad methods that need to be provided at compile time;
they are described bela Binding such parameters to program parameters will require recompilation.
See “Sub-Shaderd or more information.

Recompilation can bexecuted manually by the application using the runtime or automatically by the
runtime.

The entry point:
void cgCompileProgram(CGprogram program);
causes the gen program to be recompiled, and the function:
CGbool cglsProgramCompiled(CGprogram program);
reurns a boolean value indicating whether the current program needs recompilation.

By default, programs are automatically compiled wbg@GreatePogram() or cgCreatePogramFomFile()
is called. This behavior can be controled with the entry point :

void cgSetAutoCompile(CGcontext ctx, CGenum flag);
Where flag is one of the following three enumerants :
+ CG_COMPILE_MANUAL

With this method the application is responsible for manually recompiling a program. It may check to
see if a program requires recompilation with the entry podgisPiogramCompiled()
cgCompilePogram() can then be used to force compilation.

. CG_COMPILE_IMMEDIATE

CG_COMPILE_IMMEDIATE will force recompilation automatically and immediately when a
program enters an uncompiled state.

s CG_COMPILE_LAZY

This method is similar t&€G_COMPILE_IMMEDIATE but will delay program recompilation until the
program object code is needed. The adage of this method is the reduction otraneous
recompilations. Thedisadwantage is that compile time errors will not be encountered when the
program is enters the uncompiled state but will instead be encountered at some later time.

For programs that use featuresdiknsized arrays that can not be compiled until their array sizes are set, it
is good practice to change the default behavior of compilatio€GoCOMPILE_MANUAL so that

perl v5.10.0 Cg Toolkit 3.0 4

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

cgCreatePogram() or cgCreatePogramFomFile() do not unnecessarily encounter and report compilation
errors.

Shared Parameters (context global parameters)

Version 1.2 of the runtime introduces parameters that may be shared across programs in the same conte
via a nev binding mechanismOnce shared parameters are constructed and bound to program parameters,
setting the value of the shared parameter will automatically set the value of all of the program parameters
they are bound to.

Shared parameters belong toC&context instead of aCGprogram. They may be created with the
following new entry points :

CGparameter cgCreateParameter(CGcontext ctx, CGtype type);
CGparameter cgCreateParameterArray(CGcontext ctx, CGtype type,
int length);
CGparameter cgCreateParameterMultiDimArray(CGcontext ctx, CGtype type,
int dim, const int *lengths);

They may be deleted with :
void cgDestroyParameter(CGparameter param);

After a parameter has been created,atse’ should be set with the cgSetParameter*() routines described in
the literalization section alie.

Once a shared parameter is created it may be associated yvithraber of program parameters with the
call:

void cgConnectParameter(CGparameter from, CGparameter to);

where ‘from’’ is a parameter created with one diie cgCreateParameter(@alls, and‘to’’ is a program
parameter.

Given a pogram parametethe handle to the shared parameter that is bound to it (if any) can be found with
the call:

CGparameter cgGetConnectedParameter(CGparameter param);
It returnsNULL if no shared parameter has been connected to “param”.

There are also calls that neak possible to find the set of program parameters to whiclvem ghared
parameter has been connected to. The entry point:

int cgGetNumConnectedToParameters(CGparameter param);
returns the total number of program parameters that “pates’been conencted to, and the entry point:
CGparameter cgGetConnectedToParameter(CGparameter param, int index);

can be used to get CGparameter handles for each of the program parameters to which a shared parameter is
connected.

A shared parameter can be unbound from a program parameter with :
void cgDisconnectParameter(CGparameter param);

The context in which a shared parameter was created can be returned with;
CGcontext cgGetParameterContext(CGparameter param);

And the entrypoint:
CGbool cglsParameterGlobal(CGparameter param);

can be used to determine if a parameter is a shared (global) parameter.

perl v5.10.0 Cg Toolkit 3.0 5

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

Shader Interface Support

From the runtimes perspectie, shader interfaces are simply struct parameters the¢ aCGtype
associated with themk-or example, if the folleving Cg code is included in some program source compiled
in the runtime :

interface Foolnterface

{
float SomeMethod(float x);

}

struct FooStruct : Foolnterface

{
float SomeMethod(float x);

{
}

return(Scale * x);

float Scale;
h
The named typeBoolnterface and FooStruct will be added to the comte Eachone will hare a wique
CGtype associated with it. ThEGtype can be retriged with :

CGtype cgGetNamedUserType(CGprogram program, const char *name);
int cgGetNumUserTypes(CGprogram program);
CGtype cgGetUserType(CGprogram program, int index);

CGbool cglsParentType(CGtype parent, CGtype child);
CGbool cglsinterfaceType(CGtype type);

Once theCGtype has been retried, it may be used to construct an instance of the struct using
cgCreateParameter() It may then be bound to a program parameter of the parent type (in the abo
example this would be Foolnterface) ustgBindParameter()

Calling cgGetParameterType(®n such a parameter will return tlG_STRUCT to keep backards
compatibility with code that recurses parameter trees. In order to obtain the enumerant of the named type
the following entry point should be used :

CGtype cgGetParameterNamedType(CGparameter param);
The parent types of av@n named type may be obtained with the following entry points :

int cgGetNumParentTypes(CGtype type);
CGtype cgGetParentType(CGtype type, int index);

If Cg source modules with differing definitions of named types are added to the sarmé aongeror will
be thrown.

XXX update for n& scoping/context/program local definitions stq#X

Updated Parameter Management Routines
XXX where should these go?
Some entrypoints from beforeveabeen updated in backwards compatible ways

CGparameter cgGetFirstParameter(CGprogram program, CGenum name_space);
CGparameter cgGetFirstLeafParameter(CGprogram program, CGenum name_space);

like gGetNamedParametdaut limits search to the ggn name_spacedG_PROGRAMor CG_GLOBAL)...

perl v5.10.0 Cg Toolkit 3.0 6

CG1_2_RINTIME_CHANGES(Cg) CgTopics CG1_2_RNTIME_CHANGES(Cg)

CGparameter cgGetNamedProgramParameter(CGprogram program, CGenum name_space,
const char *name);

perl v5.10.0 Cg Toolkit 3.0 7

GLUT(Cg) CgTopics GLUT(Cq)

TOPIC
glut — using Cg with the OpenGL Utility ToolkitGLUT)

ABSTRACT
GLUT provides a cross-platform windosystemAPI for writing OpenGL &les and demod-or this
reason, the Cg examples packaged with the Cg Toolkit re3Lom.

WINDOWS INSTALLATION
The Cg Toolkit installer for \Mdows provides a pre-compiled 32-bit (and 64-bit if selectedyions of
GLUT. GLUT is provided both as a Dynamic Link LibraL({) and a static library.

The GLUT DLL is called glut32.dll and requires linking against glut32.likhese 32-bit versions are
typically installed at:

c:\Program Files\NVIDIA Corporation\Cg\bin\glut32.dll
c:\Program Files\NVIDIA Corporation\Cg\lib\glut32.lib

The 64-bit (x64) versions are installed at:

c:\Program Files\NVIDIA Corporation\Cg\bin.x64\glut32.dll
c:\Program Files\NVIDIA Corporation\Cg\lib.x64\glut32.lib

As with ary DLL in Windows, if you link your application with th&LUT DLL, running your application
requires that glut32.dll can be found whemoriting GLUT.

Alternatively you can link statically with GLUT. This can easily be done by defining the
GLUT_STATIC_LIB preprocessor macro before includi@guT's <GL/glut.h> header file. This is typically
done by adding the —DGLUT_8&TIC_LIB option to your compiler command lineNhen defined, a
#pragma in <GL/glut.h> requests the linker link against glutstatic.lib instead of glut32.lib.

The 32-bit and 64-bit versions of tB&UT static library are installed at:

c:\Program Files\NVIDIA Corporation\Cg\lib\glutstatic.lib
c:\Program Files\NVIDIA Corporation\Cg\lib.x64\glutstatic.lib

SEE ALSO
TBD

perl v5.10.0 Cg Toolkit 3.0 8

TRACE(Cqg) CgTopics TRACE(Cqg)

TOPIC
Trace— API Trace for Cg, CgGL, OpenGL a&luT
INTRODUCTION

The NVIDIA Cg Toolkit provides trace wrapper libraries for loggism calls to Cg, CgGL, OpenGL and
GLUT libraries. Thelog includes nested function call information and function parameter and return
vaues. Thdogged data can be useful for debugging, trouble shooting and reporting issues.

The libraries are experimental and require some softwastogenent expertise.

REQUIREMENTS AND LIMIT ATIONS

Trace supports Cg version 2.2.010 (October 2009) andhrolsw Cg,CgGL, OpenGL, andLUT trace
libraries are included.

CgD3D8, Cgb3D9, Cgb3D10 and CgD3D10 are not currently supported.

Cg andGLUT are supported fabSX, but currently not OpenGL.

Trace captures calls and parameters, but not the contents of files referenced by calls such as
cgCreateProgramFromFile. Areki the logs, .cg and .cgfx files together into a .zip or .tgz for later
reference.

BUILDING

The trace library source code, makefile ansusl Studio projects are located in themples/Tools/trace
directory of the Cg Toolkit installation. Pre-built binaries are also included.

The trace library components are as follows.

trace.c }

traceOutput.c } ————> trace library

b64.c }

traceCg.c —_—> Cg wrapper library
traceCgGL.c —_——> CgGL wrapper library
traceGLUT.c —> GLUT wrapper library
traceGL.c }

traceGLX.c } ————> GL wrapper library

traceWGL.c }

DEPLOYMENT
ENVIRONMENT \ARIABLES

The CG_TRACE_FILE andCG_TRACE_ERROR ervironment \ariables specify paths to the trace log and
error log. The tw file names can be the same. Otherwisut andstderr are used.

The CG_TRACE_CG_LIBRARY and CG_TRACE_CGGL_LIBRARY ervironment variables specify the
path of the target Cg and CgGL librarieBhe CG_TRACE_GL_LIBRARY environment variable specifies
the path of the target OpenGL libraryhe CG_TRACE_GLUT_LIBRARY ervironment variable specifies
the path of the target OpenGL library.

Otherwise, default system locations are used.
Recommended settings:

CG_TRACE_FILE tracelLog.txt
CG_TRACE_ERROR traceError.txt

WINDOWS

Select a trace directory to gothe trace libraries to. This can be the same as the application direthary
directory of the targetxeis recommended.

Copytrace.dll to the trace directoryThe API-specific trace libraries dependtoace.dil. The other trace

perl v5.10.0 Cg Toolkit 3.0 9

TRACE(Cqg) CgTopics TRACE(Cqg)

libraries are optional.

Optionally copy trace cg.dll and cgGL.dll to the trace directory The CG_BIN_PATH (32-hit) or
CG_BIN64_PATH (64-bit) environment variables are used unle36_TRACE_CG_LIBRARY or
CG_TRACE_CGGL_LIBRARY are defined.

Optionally copy traceopengl32.dlito the trace directory.

Optionally copy traceglut32.dll to the trace directory.

LINUX andSOLARIS

Set theLD_LIBRARY_P ATH ervironment variable to the directory containing the trace libraries. The API-

specific trace libraries depend lifstrace.so. The other trace libraries are optional.

CREDITS AND LICENCES

The core trace library uses the base64 C implementation of Base64 CoatefefEncoding standard
(also known aRFC1113 by Bob Trower Trantor Standard Systems Inc.

The Cg trace library uses the uthash C hash table implementationyb. THanson.

perl v5.10.0 Cg Toolkit 3.0 10

WIN64(Cqg) CgTopics WIN64(Cqg)

TOPIC
win64 — using Cg with 64-bit Windows

ABSTRACT
The Cg Toolkit for Vihdows installs versions of the Cg compiler and runtime libraries for both 32-bit
(x86) and 64-bit (x64) compilation. This topic documents twuse Cg for 64—bit Windows.

64-BIT INSTALLATION
The Cg Toolkit installer (CgSetup® installs the 32-bit version of the Cg compiler and the Cg runtime
libraries by dediult. To install the 64—bit support, you must check the component labElkss ‘to run and
link 64—bit (x64) Cg-based applicatiohduring your installation.

If you've forgotten to install the 64-bit component, you can re-run the Cg Toolkit installer and check the
64-bit component.

EXAMPLES

The Cg Toolkit includes ¥ual Studio .NET 2003 projects intended to compile 64-bit versions of the Cg
Toolkit examples.

These project files match the pattern *_x64.vcproj
The solution files that collect these projects matches the pattern *_x64.sln

To use these project files with Visual Studio .NET 2003, yaustalso install the latest Wdows Platform
SDK to obtain 64-bit compiler tools and libraries.

Once the PlatfornsDK is installed, from the Start menuuigate to start a Widows shell for the 64-bit
Windows Build Environment. Thisshell is started with the correctwvemnment variables (Path, Include,
and Lib) for the 64-bit compiler tools and libraries.

Now run devenv.exe with the /useen command line option that forces Visual Studio to pick wghP
Include, and Lib settings from the shellinvironment. Whenthe Msual StudiolDE appears, select
File—>Open—>Project... and locate one of the * x64.sIn files for thex@gpes. Thesare usually under:

c:\Program Files\NVIDIA Corporation\Cg\examples

When you open a *_x64.vcproj solution, it references a number of * x64.vcproj projdwse hee a
“ Debug x64"and “Release x64'configuration to build.

HINTS
Remember to link with BférOverflovU.lib because of the /GS option to help detect stringflow
runtime errors because Microsoft has enabled this option by default in its 64—bit compilers. See:

http://support.microsoft.com/?id=894573

IA64 SUPPORT
The Cg Toolkit does not provide 64-hit support for listéBnium architecture.

SEE ALSO
TBD

perl v5.10.0 Cg Toolkit 3.0 11

CG_LANGUAGE(Cg) CglLanguage Specification CG_LANQAGE(CQ)

Cg Language Specification
Copyright (c) 2001-2018VIDIA Corp.

This is version 2.0 of the Cg Language specification. This language specification describes version 2.0 of
the Cg language

Language Overview
The Cg language is primarily modeled ARSI C, but adopts some ideas from modern languages such as
C+and Jaa, and from earlier shading languages such as RenderMan and the Stanford shading language.
The language also introduces wfeew ideas. Irparticular it includes features designed to represent data
flow in stream-processing architectures such as GHsfiles, which are specified at compile time, may
subset certain features of the language, including the ability to implement loops and the precision at which
certain computations are performed.

Like C, Cg is @signed primarily as avalevel programming language. Features are provided that map as
directly as possible to hardware capabilities. Highes labstractions are designed primarily to not get in

the way of writing code that maps directly to the hadin the most efficient way possible. The changes

in the language from C primarily reflect feifences in the ay GPU hardware works compared to
conventional CPUs. GPUs are designed to run large numbers of small threads of processing in parallel,
each running a cgpof the same program on a different data set.

Differences from ANSI C
Cg was deeloped based on the ANSI-C language with the Waithg major additions, deletions, and
changes. (This is a summary-more detail is provided later in this document):
Silent Incompatibilities

Most of the changes fromNSI C are either omissions or additiongjtithere are a fe potentially silent
incompatibilities. Thesare changes within Cg that could cause a program that compiles without errors to
behae in a manner different from C:

e The type promotion rules for constants aréedént when the constant is not explicitly typed using a
type cast or type suffix. In general, a binary operation between a constant that«glinibtyetyped
and a variable is performed at the variabfeécision, rather than at the constamEfault precision.

» Declarations ofstruct perform an automatitypedef (as in G+) and thus could eerride a
previously declared type.

» Arrays are first-class types that are distinct from pointassa result, array assignments semantically
perform a cop operation for the entire array.

Similar Operations That Must be Expressed Differently

There are s@ral changes that force the same operation to be expressed differently in Cg than in C:

e« A Boolean type,bool , is introduced, with corresponding implications for operators and control
constructs.

» Arrays are first-class types because Cg does not support pointers.

* Functions pass values bglue/result, and thus use amt orinout modifier in the formal parameter
list to return a parameteBy default, formal parameters ame , but it is acceptable to specify this
explicitly. Parameters can also be specifiedhasut , which is semantically the sameiasut

C features not present in Cg

» Language profiles (described in the Profiles section) may subset language capabilities in a variety of
ways. Inparticular language profiles may restrict the use of for and while loBpsexample, some
profiles may only support loops that can be fully unrolled at compile time.

* Reserved kywordsgoto , switch , case , anddefault are not supported, nor are labels.

perl v5.10.0 Cg Toolkit 3.0 12

CG_LANGUAGE(Cg) CglLanguage Specification CG_LANQAGE(CQ)

» Pointers and pointer-related capabilities, such agthaed—> operators, are not supported.

* Arrays are supportedubwith some limitations on size and dimensionalRestrictions on the use of
computed subscripts are also permitted. Arrays may be designateaclkesd . The operations
allowed on packed arrays may befeliént from those allowed on unpacked arrafedefined
packed types are provided forectors and matrices. It is strongly recommended that these predefined
types be used.

e There is na&enumor union .
* There are no bit-field declarations in structures.
« Allintegral types are implicitly signed, there is signedkeyword.

Cg features not present in C

* A binding semantitay be associated with a structure tag, a variable, or a structure element to denote
that objects mapping to a specific hardwe orAPI resource. Bindingemantics are described in the
Binding Semanticsection.

e There is a built-in swizzle operatorxyzw or .rgba for vectors. Thisoperator allows the
components of a vector to be rearranged and also replicated. It alse @ik creation of aector
from a scalar.

» For an lvalue, the swizzle operator allows components of a vector or matrix to bevdglacttten.

e There is a similar Unilt-in swizzle operator for matrices:
._m<row><col>[_m<row><col>][...] . This operator allws access to individual matrix
components and allows the creation of a vector from elements of a matrixcompatibility with
DirectX 8 notation, there is a second form of matrix swizzle, which is described later.

* Numeric data types are filifent. Cgs primary numeric data types afleat , half , and fixed
Fragment profiles are required to support all three data typesndy choose to implemehalf
and/orfixed atfloat precision. \értex profiles are required to suppdralf andfloat , but may
choose to implemenhalf at float precision. \értex profiles may omit support fofixed
operations, but must still support definitionfisked variables. Cgallows profiles to omit run-time
support forint and other integer types. Cg allows profiles to tdeatble asfloat

« Mary operators support per-element vector operations.

e The?: ,| ,&& !, and comparison operators can be used Wwiihl vectors to perform multiple
conditional operations simultaneouslyhe side effects of all operands tector?: , || , and &&
operators are waigys executed.

* Non-static global variables, and parameters to te@-feinctions (such asain()) may be designated
asuniform . A uniform variable may be read and written within a program, just by ather
variable. Havever, the uniform modifier indicates that the initial value of the variable/parameter is
expected to be constant across a large numbewotations of the program.

A new set ofsampler* types represents handles to texture sampler units.

» Functions may hee default values for their parameters, as it+.CThese defaults are expressed using
assignment syntax.

» Function and operatowverloading is supported.

» Variables may be defined anywhere beforg tne used, rather than just at the beginning of a scope as
in C. (That is, we adopt the-Crules that geern where variable declarations are aiml.) \ariables
may not be redeclared within the same scope.

e Vector constructors, such as the fofloat4(1,2,3,4) , and matrix constructors may be used
anywhere in an expression.

e« Astruct definition automatically performs a correspondiyygedef , asin G+

perl v5.10.0 Cg Toolkit 3.0 13

CG_LANGUAGE(Cg) CglLanguage Specification CG_LANQAGE(CQ)

e Cr—style// comments are allowed in addition to C—st{fle...*/ comments.

* A limited form of inheritance is supportedhterface types may be defined which contain only
member functions (no data members) atdict types may inherit from a single interface and
provide specific implementations for all the member functidngerface objects may not be created; a
variable of interface type may i@ any mplementing struct type assigned to it.

Detailed Language Specification
Definitions

The following definitions are based on eS| C gandard:

Object
An object is a region of data storage in tkecation environment, the contents of which can represent
values. When referenced, an object may be interpreted as having a particular type.

Declaration
A declaration specifies the interpretation and attributes of a set of identifiers.

Definition
A declaration that also causes storage to be reddor an object or code that will be generated for a
function named by an identifier is a definition.

Profiles

Compilation of a Cg program, a topA function, alvays occurs in the context of a compilation profile.

The profile specifies whether certain optional language features are supported. These optional language
features include certain control constructs and standard library funcfidres.compilation profile also

defines the precision of thiwat , half , andfixed data types, and specifies whetherfiked and

sampler* data types are fully or only partially supporteéthe profile also specifies the environment in

which the program will be runThe choice of a compilation profile is made externally to the language, by
using a compiler command-line switch, for example.

The profile restrictions are only applied to the togléunction that is being compiled and toyarariables

or functions that it references, either directly or indirectfya function is present in the source codet, b
not called directly or indirectly by the topvk function, it is free to use capabilities that are not supported
by the current profile.

The intent of these rules is to all@ sngle Cg source file to contain madifferent top-lee functions that

are targeted at different profiles. The core Cg language specificatiofidiestlff complete to all all of

these functions to be parsed. The restrictions provided by a compilation profile are only needed for code
generation, and are therefore only applied to those functions for which code is being generated.
specification uses theord “program’ to refer to the top-keel function, ay functions the top-kel

function calls, and gnglobal variables or typedef definitions it references.

Each profile must h& a gparate specification that describes its characteristics and limitations.

This core Cg specification requires certain minimum capabilities for all profilesome cases, the core
specification distinguishes betweegrtex-program and fragment-program profiles, with different minimum
capabilities for each.

Declarations and declaration specifiers.

A Cg program consists of a series of declarations, each of which declares one oramaiéey or

functions, or declares and defines a single functiéach declaration consists of zero or more declaration
specifiers, a type, and one or more declarators. Some of the declaration specifiers are the same as those in
ANSI C; others are neto Cg

const
Marks a ariable as a constant that cannot be assigned to within the program. Unless this is combined
with uniform orvarying , the declarator must include an initializer teegthe variable a value.

perl v5.10.0 Cg Toolkit 3.0 14

CG_LANGUAGE(Cg) CglLanguage Specification CG_LANQAGE(CQ)

extern
Marks this declaration as solely a declaration and not a definiibere must be a noextern
declaration elsewhere in the program.

in Only usable on parameter anarying declarations. Markthe parameter or varying as an input to
the function or program. Function parameters witlimpout , or inout specifier are implicitlyn
inline
Only usable on a function definitionTells the compiler that it should vabys inline calls to the
function if at all possible.

inout
Only usable on parameter amdrying declarations. Markshe parameter orarying as both an
input to and an output from the function or program

static
Only usable on globalariables. Markshe variable as 'pvete’ to the program, and not visible
externally Cannot be combined witliniform or varying

out Only usable on parameter amdrying declarations. Mark¢he parameter or varying as an output
from the function or program

uniform
Only usable on global variables and parameters to the wep+®in function of a programlf
specified on a non-topue function parameter it is ignored. The intent of this rule is toralio
function to sere as é@her a top-lgel function or as one that is not.

Note thatuniform variables may be read and written justelikon-uniform variables. The
uniform qualifier simply provides information aboutwdhe initial value of the variable is to be
specified and stored, through a mechanism external to the language.

varying
Only usable on global variables and parameters to the wep+®in function of a programlf
specified on a non-topue function parameter it is ignored.

profile name
The name of anprofile (or profile wildcard— see Profiles) may be used as a specifier gn an
function declaration. It defines a function that is only visible in the corresponding profiles.

The specifiersiniform andvarying specify hav data is transferred between the rest of the world and a
Cg program.Typically, the initial value of auniform variable or parameter is stored in a different class
of hardware register forwarying . Furthermore, the external mechanism for specifying the initiblev

of uniform variables or parameters may befelient than that used for specifying the initial value of
varying variables or parameterPaameters qualified agniform are normally treated as persistent
state, whilevarying parameters are treated as streaming data, witlvaalae specified for each stream
record (such as within a vexterray).

Non-static global variables are treated asiform by defult, while parameters to the top«e
function are treated amrying by default.

Each declaration is visible (“in scopefrom the point of its declarator until the end of the enclosing block
or the end of the compilation unit if outsideydstock. Declarationsn named scopes (such as structs and
interfaces) may be visible outside of their scope using explicit scope qualifiers,+as in C

Semantics

Each declarator in a declaration may optionallyeha €mantic specified with itA semantic specifies o

the \ariable is connected to the environment in which the program runs. All semantics are profile specific
(so thg havedifferent meanings in ddrent profiles), though there is some attempt to be consistent across
profiles. Eactlprofile specification must specify the set of semantics which the profile understands, as well
as what behavior occurs foryaother unspecified semantics.

perl v5.10.0 Cg Toolkit 3.0 15

CG_LANGUAGE(Cg) CglLanguage Specification CG_LANQAGE(CQ)

Function Declarations

Functions are declared essentially as inAf.unction that does not return a value must be declared with a
void return type.A function that takes no parameters may be declared in one ofays:

As in C, using the voiddgword:
functionName(void)

With no parameters at all:
functionName()

Functions may be declared static . If so, they may not be compiled as a program and are not visible
externally

Function overloading and optional arguments

Cg supports functionverloading; that is you may define multiple functions with the same narhe.
function actually called at gngiven call site is based on the types of the arguments at that call site; the
definition that best matches is called. See the functeriaading section for the precise rulesrailing
arguments with initializers are optional arguments; defining a function with optional arguments is
equialent to defining multiple werloaded functions that differ by having and not having the optional
argument. Thevalue of the initializer is used only for the version that does net tiee argument and is
ignored if the argument is present.

Overloading of Functions by Profile

Cg supports werloading of functions by compilation profile. This capability allows a function to be
implemented differently for different profiledt is also useful because different profiles may support
different subsets of the language capabilities, and because the most efficient implementation of a function
may be different for different profiles.

The profile name must precede the return type name in the function declaration. For example, toadefine tw
different versions of the functiamyfunc for theprofileA andprofileB profiles:

profileA float myfunc(float x) {...};
profileB float myfunc(float x) {...};

If a type is defined (usingtgpedef) that has the same name as a profile, the identifier is treated as a type
name, and is nowailable for profile werloading at ap subsequent point in the file.

If a function definition does not include a profile, the function is referred to aspam-profile’ function.
Open-profile functions apply to all profiles.

Several wildcard profile names are defined. The narmematches apvertex profile, while the names
matches anfragment or pixel profile. The namps_1 andps_2 match ag DX8 pixel shader 1.x profile,
or DX9 pixel shader 2.x profile, respaay. Smilarly, the namews_1 andvs_2 match ag DX vertex
shader 1.x or 2.x, respeddy