DELORES Programmer’s Guide

Tristan Miller
German Research Center for Artificial Intelligence
Erwin-Schrédinger-Strafie 57
67663 Kaiserslautern
Tristan.Miller@dfki.de

13 December 2003

Contents

1 Introduction

1.1
1.2

2.1
2.2
2.3
24

2.5

2.6

2.7

2.8

2.9

2.10

About this document
Program history

Overview of project files

Project management
Metadata files
Build files
Documentation
2.4.1 delores.1

2.4.2 delores.tex
Cross-platform compatibility

25.1 config.h
2.5.2 dl.stdbool.h.
2.5.3 dlstdint.h
2.5.4 dl_strdup.h, dl_strdup.c

Memory management
2.6.1 dlmalloc.h
2.6.2 dlmalloc.c
2.6.3 bget.h
264 bget.c
Hash table abstract data type
2.71 ohash.h
2.72 ohash.c
Timer abstract data type
28.1 timer.h
2.8.2 timer.c

Command-line argument processing
29.1 cmd-line,args.h
2.9.2 cmd_line_args.l
2.9.3 primes.txt
294 cmd_line_args.c
Main interpreter
2.10.1 dl1.h
2.10.2 lexer.1l
2.10.3 parser.y
2.104 dl.c
2.10.5
2.10.6

—_ =

R s R R R R R R R W W W W W W W WWWWNONNNDNDNDNNDNDNDND NN

>~

2.10.7 parser.h, parser.c
2.10.8 delores

>~

3 Bugs and debugging
3.1 Known issues
3.2 Debugging tools.

3.2.1 Lexer
3.2.2
3.2.3
3.24
3.2.5

CUL UL OU U U U i

4 Data structures
4.1 Atoms
42 Rules.
4.3 Rule lists
4.4 Literals

S O O Ut O

L\ |

5 Future improvements
5.1 Project maintenance
5.2 Interpreter.

EN|

EN|

A Copyright 7

1 Introduction

1.1 About this document

DELORES is a defeasible logic interpreter which
works in interactive or batch mode. The follow-
ing document is intended to assist future developers
and maintainers of the DELORES project in com-
prehending the structure of the source code. It is
not intended to cover in great detail the inner work-
ings of the individual functions, and as such should
not be considered a replacement for the program’s
internal documentation.

1.2 Program history

The original DELORES was implemented from 13
October 1999 to 13 January 2000 at Griffith Uni-

versity by Tristan Miller, based on instructions and
papers provided by Michael Maher. The system
was revised for public release in December 2003 by
Tristan Miller, then at the German Research Center
for Artificial Intelligence (DFKI GmbH) in Kaisers-
lautern.

2 Overview of project files

Files in the DELORES distribution are organized
into a number of subdirectories. doc contains the
program documentation, src contains the program
source, examples contains sample theories for DE-
LORES, and the root directory contains various
files related to project management.

2.1 Project management

The DELORES project is distributed using the
GNU Build System; the distributed files therefore
adhere more or less to the GNU coding standards.

2.2 Metadata files

The files AUTHORS, ChangeLog, COPYING, INSTALL,
README, NEWS, and THANKS are all required by the
GNU Build System. They are self-explanatory
and should be manually updated when any major
changes are made. As DELORES is maintained
in a CVS repository, it is easiest to update the
ChangeLog file with the GNU rcs2log program.

The BUGS and TODO files are not mandated by
the GNU standards but are included for obvious
reasons.

2.3 Build files

The human-created files for use with Autoconf and
Automake are configure.ac and Automake.am.'
Refer to the GNU Autoconf and Automake manuals
for how to edit these files.

Every other file included in the distribution and
not mentioned in this manual is automatically pro-
duced by the GNU Build System.

2.4 Documentation
2.4.1 delores.1

This is the Unix man page for DELORES, written
with troff macros.

1Each subdirectory in the distribution may have its own
Automake.am.

2.4.2 delores.tex

This is the I¥TEX source for this document.

2.5 Cross-platform compatibility

2.5.1 config.h

This file is automatically generated by the Auto-
conf configure script distributed with DELORES;
it #defines a number of C preprocessor macros
informing DELORES which C features are avail-
able on the host system. For those systems which
for whatever reason cannot run the configure
script, config.h can be manually produced using
config.h.in as a template.

2.5.2 dl_stdbool.h

DELORES makes use of C99’s bool data type.
This data type is not yet available on all C com-
pilers, so dl_stdbool.h is provided as a wrap-
per to the official library header <stdbool.h>.
If the user’s compiler does not have the bool
data type, then d1_stdbool.h will define it. Any
source file using boolean variables must #include
"d1l_stdbool.h" instead of <stdbool.h>.

2.5.3 dl_stdint.h

DELORES makes extensive use of various pre-
processor macros and data types defined in
the <stdint.h> header, which is new in C99.
Since C99 is not yet widely supported, DE-
LORES’s d1_stdint.h wrapper should be used in
place of <stdint.h>. Files making use of the
macros PRIuMAX, SCNuMAX, SIZE _MAX; the data type
uintmax_t; or the function strtoumax() #include
this wrapper.

2.5.4 dl_strdup.h, dl_strdup.c

The strdup () function is a non-standard extension
to the C language provided by many compilers. For
those compilers which do not include this function,
we define our own version here. Any file which uses
the strdup() function should therefore be sure to
#include "dl_strdup.h"

2.6 Memory management

The following files were incorporated into DE-
LORES over fears that the native memory man-
agement provided by the development environ-
ment and/or operating system (i.e., malloc() and
friends) would be too slow. With this code, de-
velopers now have the option of compiling DE-
LORES with the default memory management

scheme, or with BGET, a public domain memory
allocation package by John Walker. The original
BGET source code has been modified somewhat
for smoother integration with DELORES, to elimi-
nate some unnecessary code and internal documen-
tation, and to correct brel ()’s incompatibility with
free(Q).

2.6.1 dlmalloc.h

In this header is defined the macro DL_USE_BGET,
whose presence indicates to use the BGET mem-
ory allocation package instead of the environment’s
native malloc() and free(). Note that all mem-
ory allocation in DELORES should be performed
using balloc() and bfree(), which are wrappers
for the BGET or native malloc() and free(). If
BGET support is enabled, this header also gives
the prototype for bufferPoolInitialize (), which
must be called before the first use of balloc().
The d1_malloc.h file should be included in any file
making use of dynamic memory allocation.

2.6.2 dlmalloc.c

This file defines the function balloc(), which
is essentially a wrapper for either malloc() or
BGET’s bget (), depending on whether or not the
DL_USE_BGET macro is defined. balloc() has the
added functionality of checking the return value
of the memory allocation function, and aborting
execution if no further memory is available. If
DL_USE_BGET is defined, this file also includes code
for the bufferPoolInitialize() function and the
two static functions it calls.

2.6.3 bget.h

This is the header file for the BGET memory allo-
cator. It includes prototypes for functions (which
are not used outside bget.c and d1_malloc.*) and
some useful macros and a typedef. (For some
reason, the author of BGET elected to use long
instead of the standard size_t for his memory
buffers; accordingly, BGET is not completely com-
patible with malloc() and friends.?) There is no
need to include this file as it is already included in
the d1_malloc files.

2.6.4 Dbget.c

This file contains the code for BGET, John
Walker’s memory allocation package which serves
as a faster, mostly-compatible replacement for

2This may explain why DELORES compiled with BGET
periodically crashes on some systems.

malloc(). Some of the code in bget.c, and its as-
sociated header bget.h, has been modified by the
DELORES author.

2.7 Hash table abstract data type

The hash table data type comes in a separate mod-
ule, OHASH, comprising the two files ohash.h and
ohash.c. OHASH is a public domain hash table
module by Tristan Miller, based on public domain
code by Jerry Coffin. OHASH comes with extensive
internal documentation, and the reader is encour-
aged to consult it.

2.7.1 ohash.h

This header gives typedefs and function prototypes
for the hash table ADT. Any DELORES source file
making use of hash tables needs to include this file.

2.7.2 ohash.c

This file includes the source code for the functions
to add to, delete from, and search hash tables.

2.8 Timer abstract data type

The timer ADT's provide an interface for creating
timers to measure CPU time and, if possible, real
time. The source code is extremely simple, usage
of this module should be obvious from a cursory
examination of the header file.

2.8.1 timer.h

This header gives the typedefs and function pro-
totypes dealing with real-time and CPU-time
timers. Any file making use of the cpuTimer
and realTimer data types and associated functions
should include this file.

2.8.2 timer.c

This file provides the definitions for functions which
initialize, reset, read, and destroy timers. Some of
the code is platform-specific; its inclusion is deter-
mined by preprocessor directives in timer.h. If the
platform does not support real-time timers with
subsecond resolution, then reading a realTimer
will always return O.

2.9 Command-line argument pro-
cessing

Because of the inflexibility and nonportability of
getopt (), the command line argument processor
has been manually implemented as a Flex lexer.

2.9.1 cmd line_args.h

This header file typedefs a struct, cmdargs_t, which
is used to pass the parsed command line arguments
from the lexer. It also contains the function pro-
totype for getCmdLineArgs (), the function which
does the actual processing.

2.9.2 cmd line_args.1l

This file contains the Flex lexer for processing the
command-line arguments. It is responsible for de-
termining whether the requested hash table sizes,
etc., are within the acceptable limits, and also for
finding the closest prime to the arguments for the
-a and -r options.

2.9.3 primes.txt

This text file lists the first 100 008 primes,® plus a
few more. It is used to search for the smallest prime
greater than or equal to the number given with the
-a and -r command-line options.

2.9.4 cmd_line_args.c

This is the C source code produced when Flex is
invoked on cmd_line_args.l. It is an intermedi-
ate file and, provided one has Flex, may be safely
deleted after project compilation.

2.10 Main interpreter
2.10.1 dl.h

This header file contains data types, global vari-
ables, function prototypes, and macros shared
among the lexer, parser, and interpreter.

2.10.2 1lexer.1l

This is the interpreter’s lexer; its primary job is to
recognize tokens (keywords, atoms, variables, and
labels) and pass them onto the parser. It is also
responsible for ignoring comments, and for process-
ing included files. This file must be processed by
Flex to yield a C source file, lexer.c. The lexer is
invoked by the parser, parser.y.

2.10.3 parser.y

This file contains the interpreter’s parser, which
is processed by Bison to yield the C source files
parser.h and parser.c. The parser is the main

3Source: http://www.utm.edu/research/primes/lists/
small/

loop of the interpreter; it is responsible for recog-
nizing the grammar of the defeasible logic language
and deciding which functions to call.

2.10.4 dl.c

This file contains all the functions called by the
parser to manipulate the program’s data. It con-
tains the core of the interpreter’s functionality;
there are functions to add and delete literals, rules,
and atoms, as well as routines for executing the
defeasible logic reasoning engines.

2.10.5 main.c

This file contains main() and is the point of en-
try to the interpreter. main() is responsible for
calling the command line argument lexer and mak-
ing the appropriate initializations based on its re-
turn value, and then invoking the parser. This file
also contains the hash table variables, and the hash-
ing functions used to initialize them. (The hashing
functions are not included in the ohash module be-
cause it is meant to be an abstract data type; no
one hashing function can work on all possible data
so the user (in this case, DELORES) is expected to
provide their own hashing functions.)

2.10.6 1lexer.c

lexer.c is the intermediate source file produced
when Flex is invoked on lexer.l. It may be safely
deleted.

2.10.7 parser.h, parser.c

These are the intermediate source files produced
when Bison is invoked on parser.y. Provided one
has Bison to rebuild them, they may be safely
deleted.

2.10.8 delores

This is the actual executable file of the DELORES
interpreter.

3 Bugs and debugging

3.1 Known issues

The code for DELORES is believed to be bug-free,
in the sense that it has not (yet) been made to
crash or to produce unpredictable results. There
is, however, one segment of code which is perhaps
not as intelligent as it could be made. Namely, the
lexer code for the include directive is written such
that it interprets as a filename everything between

the first left parenthesis after the include keyword
and the last right parenthesis and period before a
newline. Needless to say, this is problematic if one’s
program contains a line such as the following:

include(programl.dl). include(program2.dl).

In this case, DELORES aborts with an er-
ror indicating that the file "program1l.dl).
include(program2.dl" cannot be found. To rec-
tify this behaviour is not a trivial feat, which is
why it was not done by the original author in the
first place. Until such time as it is fixed, users are
cautioned to place their include directives on lines
separate from any other statements.

3.2 Debugging tools

There are a number of debugging facilities built
into DELORES and its associated modules. Typ-
ically, these facilities take the form of conditional
compilation directives which, when certain macros
are defined, compile in extra debugging informa-
tion which will be printed to standard error when
the interpreter is run.

3.2.1 Lexer

The lexer (that part of the interpreter which rec-
ognizes individual tokens) can be made to print
out information on tokens as it recognizes them by
defining the DL_LEXER DEBUG macro. This macro
can be found, commented out, in d1.h.

3.2.2 Parser

The parser (that part of the interpreter which rec-
ognizes the language grammar) can be made to
print out information on syntactic constructs as it
recognizes them by defining the DL_PARSER DEBUG
macro. This macro can be found, commented out,
in d1.h.

3.2.3 Other functions

To enable other helpful debugging messages in the
interpreter, there is the DL_DEBUG macro, which
may be enabled in d1.h. When DL_DEBUG is en-
abled, the user also has access to the ? command
which, when appended to an atom name, will print
out detailed information on that atom. (The in-
formation given is much more in-depth than that
provided by the print directive.) The d1.h header
also includes the DL_PROFILE macro which, when
enabled, will time the execution of DELORES.
(Obviously, the results will only be meaningful in
batch mode.)

3.2.4 BGET

The only debugging facility in BGET is the use of
assert () macros, which is turned on and off with
the NDEBUG macro.

3.2.5 OHASH

When compiled, OHASH looks for the presence of a
HASH_PROFILE macro (commented out in ohash.h).
If it exists, it will compile in a special variable,
collisions, in the hash table data structure. As
its name suggests, collisions holds a running to-
tal of the number of insertion collisions for the as-
sociated hash table. Code in main.c will test for
the presence of the HASH_PROFILE macro and, if
it exists, will print out the number of atom table
and rule table collisions before the interpreter exits.
This information can be used to test the suitability
of the hashing function.

4 Data structures

All custom data types in DELORES (with the ex-
ception of hash tables and timers) are defined in
dl.h. (The reader is encouraged to consult this
file directly, as many of the concepts are mutually
referential and thus difficult to explain in prose.)
There are two fundamental data types, atoms and
rules, and two aggregate data types, rule lists and
literals.

4.1 Atoms

Atoms are those unique, definite constants which
correspond to proper nouns in natural language.
Atoms, which are C variables of type Atom, are
uniquely identified by a name (any sequence of al-
phanumeric characters, including the underscore,
which begins with a lowercase letter) and are
stored in a hash table called atomTable. The
Atom data structure contains a pointer (char *id)
to the atom’s name; a series of boolean vari-
ables (bool plus_delta, bool minus_sigma neg,
etc.) giving information on what has been proved
about the atom and its negation; two pointers
to a list of rules (RuleList *rule heads and
RuleList *rule heads neg) whose head is the
atom or its negation; and finally pointers (Literal
*strict_occ, Literal *defeater_occ_neg, eic.)
to lists of occurrences of that atom (or its nega-
tion) in strict, defeasible, and defeater rule bodies.

4.2 Rules

Every rule has a unique identifying label (char
*id) comprised of alphanumeric characters and dig-
its; the label must begin with a letter. Labels gen-
erated by the interpreter may also contain slashes.
Rules are C variables of type Rule, and are stored
in a hash table called ruleTable. A rule has three
basic parts: the head, the arrow type, and the body.
The head is comprised of a pointer to an atom (Atom
*head), and a boolean flag (bool neg) indicating
whether the atom is to be negated. The arrow
type (int arrow_type) is one of SARROW, DARROW,
or DEFARROW; these are preprocessor macros defined
in parser.h. Finally, the body is a pointer to a list
of literals. Also stored with the rule is a number
indicating the order in which it was created; this is
used by the 1listing directive to sort the rules.

4.3 Rule lists

As the name implies, a rule list (variable of type
RuleLlist) is simply a doubly-linked list of pointers
to rules. Their main use is in the Atom data struc-
ture; every atom a points to a list of rules whose
head is a.

4.4 Literals

Literals (variables of type Literal) are, basically
speaking, lists of atoms. They are used primarily
as rule bodies. A literal contains a pointer (Atom
*atom) to an atom, a boolean flag (bool neg) in-
dicating whether the atom is negated, and pointers
(Literal #*next and Literal *prev) to the previ-
ous and next literals in the list. The literal will also
contain a pointer (Rule *rule) to the rule whose
body it is in, if applicable. For example, take the
following rule:

r: h <= bl, neg b2, b3.

This rule’s body is essentially a pointer to the lit-
eral, let’s call it L1. Then L1.rule is a pointer
to the rule r, L1.atom is a pointer to b1, L1.neg
is false, L1.prev is NULL, and L1.next contains a
pointer to the next literal in the body, say, L2. Then
L2.rule is a pointer to r, L2.atom is a pointer to
b2, L2.neg is true, and so on.

Literals also contain two more pointers, which
the author has labelled “up” and “down” more
for ease of visualization than for accurate se-
mantics. Whereas the “prev” and “next” point-
ers point to the corresponding left or right lit-
eral in the rule body as it would be written, the
“up” and “down” pointers point to the previ-
ous and next literals in that literal’s equivalence

class. The equivalence class for a literal L is the
set of all literals E for which L.atom == E.atom
and L.neg == E.negand L.rule->arrow_type ==
E.rule->arrow_type (where L.rule and E.rule
are both non-NULL). It is to these equivalence
classes of literals that the atoms’ strict_occ,
strict_occ._neg, et al. pointers to point. Here is
another example; assume that these are the only
two rules in the theory:

r: h <=
s: 1 <=

neg bl, b2.
neg bil.

For simplicity’s sake, assume that b1 and b2 are the
C variable names for the atoms b1 and b2, respec-
tively. Further, assume that L1 and L2 are Literal
variables for the first two body elements in r, and
L3 is a Literal variable representing the body of
s. Finally, say r is the variable for the rule r, and
likewise s for s. Then we have the following:

bl.strict_occ == NULL
bl.strict_occ_neg == NULL
bl.defeater_occ == NULL
bl.defeater_occ_neg == NULL
bl.defeasible_occ == NULL
bl.defeasible_occ_neg == &L1
b2.strict_occ == NULL
b2.strict_occ_neg == NULL
b2.defeater_occ == NULL
b2.defeater_occ_neg == NULL
b2.defeasible_occ == &L2

Ll.atom == &bl
L1l.neg == true
Ll.rule == &r
L1.prev == NULL
L1l.next == &L2
L1l.up == NULL
L1.down == &L3
L2.atom == &b2

L2.neg == false
L2.rule == &r

L2.prev == &L1
L2.next == NULL
L2.up == NULL
L2.down == NULL
L3.atom == &bl
L3.neg == true
L3.rule == &s
L3.prev == NULL
L3.next == NULL
L3.up == &L1
L3.down == NULL

5 Future improvements

5.1 Project maintenance

e The external documentation could probably be
improved, especially the above section on data
structures, as it was produced under somewhat
rushed conditions.

5.2 Interpreter

e Though the grammar is in place, the seman-
tics for term lists, faild/failD declarations,
and variables/grounding has yet to be imple-
mented. See lexer.l and parser.y for what
code needs to be added—sections are marked
conspicuously with the following comments:

/* *xx NOT IMPLEMENTED YET **x* */

e Both the syntax and semantics for private
declarations has yet to be implemented.

e When an error occurs interpreting a deeply-
nested include file, it would be helpful to
track back through the include stack much in
the same way that gcc does. This functionality
would be built into lexer.1.

e The well-founded defeasible logic inference en-
gine is not complete. Those sections which
still need work are conspicuously marked as
such in the program’s internal documentation.
Briefly, however, the only procedures which are
not yet in place are the mechanisms for “re-
membering” the state of the rules and for re-
turning the rules to that state. The former re-
quires changes to inferRevisedAlgorithm(),
and the latter changes to resetRules(), both
indl.c.

A Copyright

Copyright (©) 2000 Michael Maher.
Copyright (© 2000, 2003 Tristan Miller.

Permission is granted to anyone to make or dis-
tribute verbatim copies of this document as re-
ceived, in any medium, provided that the copyright
notice and this permission notice are preserved,
thus giving the recipient permission to redistribute
in turn.

Permission is granted to distribute modified ver-
sions of this document, or of portions of it, under
the above conditions, provided also that they carry
prominent notices stating who last changed them.

