#! /usr/bin/env perl # Copyright (c) 1998-2007, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # --- # Program for printing the profile generated by common/profiler.cc, # or by the heap profiler (common/debugallocation.cc) # # The profile contains a sequence of entries of the form: # # This program parses the profile, and generates user-readable # output. # # Examples: # # % tools/jeprof "program" "profile" # Enters "interactive" mode # # % tools/jeprof --text "program" "profile" # Generates one line per procedure # # % tools/jeprof --gv "program" "profile" # Generates annotated call-graph and displays via "gv" # # % tools/jeprof --gv --focus=Mutex "program" "profile" # Restrict to code paths that involve an entry that matches "Mutex" # # % tools/jeprof --gv --focus=Mutex --ignore=string "program" "profile" # Restrict to code paths that involve an entry that matches "Mutex" # and does not match "string" # # % tools/jeprof --list=IBF_CheckDocid "program" "profile" # Generates disassembly listing of all routines with at least one # sample that match the --list= pattern. The listing is # annotated with the flat and cumulative sample counts at each line. # # % tools/jeprof --disasm=IBF_CheckDocid "program" "profile" # Generates disassembly listing of all routines with at least one # sample that match the --disasm= pattern. The listing is # annotated with the flat and cumulative sample counts at each PC value. # # TODO: Use color to indicate files? use strict; use warnings; use Getopt::Long; use Cwd; my $JEPROF_VERSION = "@jemalloc_version@"; my $PPROF_VERSION = "2.0"; # These are the object tools we use which can come from a # user-specified location using --tools, from the JEPROF_TOOLS # environment variable, or from the environment. my %obj_tool_map = ( "objdump" => "objdump", "nm" => "nm", "addr2line" => "addr2line", "c++filt" => "c++filt", ## ConfigureObjTools may add architecture-specific entries: #"nm_pdb" => "nm-pdb", # for reading windows (PDB-format) executables #"addr2line_pdb" => "addr2line-pdb", # ditto #"otool" => "otool", # equivalent of objdump on OS X ); # NOTE: these are lists, so you can put in commandline flags if you want. my @DOT = ("dot"); # leave non-absolute, since it may be in /usr/local my @GV = ("gv"); my @EVINCE = ("evince"); # could also be xpdf or perhaps acroread my @KCACHEGRIND = ("kcachegrind"); my @PS2PDF = ("ps2pdf"); # These are used for dynamic profiles my @URL_FETCHER = ("curl", "-s", "--fail"); # These are the web pages that servers need to support for dynamic profiles my $HEAP_PAGE = "/pprof/heap"; my $PROFILE_PAGE = "/pprof/profile"; # must support cgi-param "?seconds=#" my $PMUPROFILE_PAGE = "/pprof/pmuprofile(?:\\?.*)?"; # must support cgi-param # ?seconds=#&event=x&period=n my $GROWTH_PAGE = "/pprof/growth"; my $CONTENTION_PAGE = "/pprof/contention"; my $WALL_PAGE = "/pprof/wall(?:\\?.*)?"; # accepts options like namefilter my $FILTEREDPROFILE_PAGE = "/pprof/filteredprofile(?:\\?.*)?"; my $CENSUSPROFILE_PAGE = "/pprof/censusprofile(?:\\?.*)?"; # must support cgi-param # "?seconds=#", # "?tags_regexp=#" and # "?type=#". my $SYMBOL_PAGE = "/pprof/symbol"; # must support symbol lookup via POST my $PROGRAM_NAME_PAGE = "/pprof/cmdline"; # These are the web pages that can be named on the command line. # All the alternatives must begin with /. my $PROFILES = "($HEAP_PAGE|$PROFILE_PAGE|$PMUPROFILE_PAGE|" . "$GROWTH_PAGE|$CONTENTION_PAGE|$WALL_PAGE|" . "$FILTEREDPROFILE_PAGE|$CENSUSPROFILE_PAGE)"; # default binary name my $UNKNOWN_BINARY = "(unknown)"; # There is a pervasive dependency on the length (in hex characters, # i.e., nibbles) of an address, distinguishing between 32-bit and # 64-bit profiles. To err on the safe size, default to 64-bit here: my $address_length = 16; my $dev_null = "/dev/null"; if (! -e $dev_null && $^O =~ /MSWin/) { # $^O is the OS perl was built for $dev_null = "nul"; } # A list of paths to search for shared object files my @prefix_list = (); # Special routine name that should not have any symbols. # Used as separator to parse "addr2line -i" output. my $sep_symbol = '_fini'; my $sep_address = undef; ##### Argument parsing ##### sub usage_string { return < is a space separated list of profile names. jeprof [options] is a list of profile files where each file contains the necessary symbol mappings as well as profile data (likely generated with --raw). jeprof [options] is a remote form. Symbols are obtained from host:port$SYMBOL_PAGE Each name can be: /path/to/profile - a path to a profile file host:port[/] - a location of a service to get profile from The / can be $HEAP_PAGE, $PROFILE_PAGE, /pprof/pmuprofile, $GROWTH_PAGE, $CONTENTION_PAGE, /pprof/wall, $CENSUSPROFILE_PAGE, or /pprof/filteredprofile. For instance: jeprof http://myserver.com:80$HEAP_PAGE If / is omitted, the service defaults to $PROFILE_PAGE (cpu profiling). jeprof --symbols Maps addresses to symbol names. In this mode, stdin should be a list of library mappings, in the same format as is found in the heap- and cpu-profile files (this loosely matches that of /proc/self/maps on linux), followed by a list of hex addresses to map, one per line. For more help with querying remote servers, including how to add the necessary server-side support code, see this filename (or one like it): /usr/doc/gperftools-$PPROF_VERSION/pprof_remote_servers.html Options: --cum Sort by cumulative data --base= Subtract from before display --interactive Run in interactive mode (interactive "help" gives help) [default] --seconds= Length of time for dynamic profiles [default=30 secs] --add_lib= Read additional symbols and line info from the given library --lib_prefix= Comma separated list of library path prefixes Reporting Granularity: --addresses Report at address level --lines Report at source line level --functions Report at function level [default] --files Report at source file level Output type: --text Generate text report --callgrind Generate callgrind format to stdout --gv Generate Postscript and display --evince Generate PDF and display --web Generate SVG and display --list= Generate source listing of matching routines --disasm= Generate disassembly of matching routines --symbols Print demangled symbol names found at given addresses --dot Generate DOT file to stdout --ps Generate Postcript to stdout --pdf Generate PDF to stdout --svg Generate SVG to stdout --gif Generate GIF to stdout --raw Generate symbolized jeprof data (useful with remote fetch) Heap-Profile Options: --inuse_space Display in-use (mega)bytes [default] --inuse_objects Display in-use objects --alloc_space Display allocated (mega)bytes --alloc_objects Display allocated objects --show_bytes Display space in bytes --drop_negative Ignore negative differences Contention-profile options: --total_delay Display total delay at each region [default] --contentions Display number of delays at each region --mean_delay Display mean delay at each region Call-graph Options: --nodecount= Show at most so many nodes [default=80] --nodefraction= Hide nodes below *total [default=.005] --edgefraction= Hide edges below *total [default=.001] --maxdegree= Max incoming/outgoing edges per node [default=8] --focus= Focus on backtraces with nodes matching --thread= Show profile for thread --ignore= Ignore backtraces with nodes matching --scale= Set GV scaling [default=0] --heapcheck Make nodes with non-0 object counts (i.e. direct leak generators) more visible --retain= Retain only nodes that match --exclude= Exclude all nodes that match Miscellaneous: --tools=[,...] \$PATH for object tool pathnames --test Run unit tests --help This message --version Version information Environment Variables: JEPROF_TMPDIR Profiles directory. Defaults to \$HOME/jeprof JEPROF_TOOLS Prefix for object tools pathnames Examples: jeprof /bin/ls ls.prof Enters "interactive" mode jeprof --text /bin/ls ls.prof Outputs one line per procedure jeprof --web /bin/ls ls.prof Displays annotated call-graph in web browser jeprof --gv /bin/ls ls.prof Displays annotated call-graph via 'gv' jeprof --gv --focus=Mutex /bin/ls ls.prof Restricts to code paths including a .*Mutex.* entry jeprof --gv --focus=Mutex --ignore=string /bin/ls ls.prof Code paths including Mutex but not string jeprof --list=getdir /bin/ls ls.prof (Per-line) annotated source listing for getdir() jeprof --disasm=getdir /bin/ls ls.prof (Per-PC) annotated disassembly for getdir() jeprof http://localhost:1234/ Enters "interactive" mode jeprof --text localhost:1234 Outputs one line per procedure for localhost:1234 jeprof --raw localhost:1234 > ./local.raw jeprof --text ./local.raw Fetches a remote profile for later analysis and then analyzes it in text mode. EOF } sub version_string { return < \$main::opt_help, "version!" => \$main::opt_version, "cum!" => \$main::opt_cum, "base=s" => \$main::opt_base, "seconds=i" => \$main::opt_seconds, "add_lib=s" => \$main::opt_lib, "lib_prefix=s" => \$main::opt_lib_prefix, "functions!" => \$main::opt_functions, "lines!" => \$main::opt_lines, "addresses!" => \$main::opt_addresses, "files!" => \$main::opt_files, "text!" => \$main::opt_text, "callgrind!" => \$main::opt_callgrind, "list=s" => \$main::opt_list, "disasm=s" => \$main::opt_disasm, "symbols!" => \$main::opt_symbols, "gv!" => \$main::opt_gv, "evince!" => \$main::opt_evince, "web!" => \$main::opt_web, "dot!" => \$main::opt_dot, "ps!" => \$main::opt_ps, "pdf!" => \$main::opt_pdf, "svg!" => \$main::opt_svg, "gif!" => \$main::opt_gif, "raw!" => \$main::opt_raw, "interactive!" => \$main::opt_interactive, "nodecount=i" => \$main::opt_nodecount, "nodefraction=f" => \$main::opt_nodefraction, "edgefraction=f" => \$main::opt_edgefraction, "maxdegree=i" => \$main::opt_maxdegree, "focus=s" => \$main::opt_focus, "thread=s" => \$main::opt_thread, "ignore=s" => \$main::opt_ignore, "scale=i" => \$main::opt_scale, "heapcheck" => \$main::opt_heapcheck, "retain=s" => \$main::opt_retain, "exclude=s" => \$main::opt_exclude, "inuse_space!" => \$main::opt_inuse_space, "inuse_objects!" => \$main::opt_inuse_objects, "alloc_space!" => \$main::opt_alloc_space, "alloc_objects!" => \$main::opt_alloc_objects, "show_bytes!" => \$main::opt_show_bytes, "drop_negative!" => \$main::opt_drop_negative, "total_delay!" => \$main::opt_total_delay, "contentions!" => \$main::opt_contentions, "mean_delay!" => \$main::opt_mean_delay, "tools=s" => \$main::opt_tools, "test!" => \$main::opt_test, "debug!" => \$main::opt_debug, # Undocumented flags used only by unittests: "test_stride=i" => \$main::opt_test_stride, ) || usage("Invalid option(s)"); # Deal with the standard --help and --version if ($main::opt_help) { print usage_string(); exit(0); } if ($main::opt_version) { print version_string(); exit(0); } # Disassembly/listing/symbols mode requires address-level info if ($main::opt_disasm || $main::opt_list || $main::opt_symbols) { $main::opt_functions = 0; $main::opt_lines = 0; $main::opt_addresses = 1; $main::opt_files = 0; } # Check heap-profiling flags if ($main::opt_inuse_space + $main::opt_inuse_objects + $main::opt_alloc_space + $main::opt_alloc_objects > 1) { usage("Specify at most on of --inuse/--alloc options"); } # Check output granularities my $grains = $main::opt_functions + $main::opt_lines + $main::opt_addresses + $main::opt_files + 0; if ($grains > 1) { usage("Only specify one output granularity option"); } if ($grains == 0) { $main::opt_functions = 1; } # Check output modes my $modes = $main::opt_text + $main::opt_callgrind + ($main::opt_list eq '' ? 0 : 1) + ($main::opt_disasm eq '' ? 0 : 1) + ($main::opt_symbols == 0 ? 0 : 1) + $main::opt_gv + $main::opt_evince + $main::opt_web + $main::opt_dot + $main::opt_ps + $main::opt_pdf + $main::opt_svg + $main::opt_gif + $main::opt_raw + $main::opt_interactive + 0; if ($modes > 1) { usage("Only specify one output mode"); } if ($modes == 0) { if (-t STDOUT) { # If STDOUT is a tty, activate interactive mode $main::opt_interactive = 1; } else { $main::opt_text = 1; } } if ($main::opt_test) { RunUnitTests(); # Should not return exit(1); } # Binary name and profile arguments list $main::prog = ""; @main::pfile_args = (); # Remote profiling without a binary (using $SYMBOL_PAGE instead) if (@ARGV > 0) { if (IsProfileURL($ARGV[0])) { $main::use_symbol_page = 1; } elsif (IsSymbolizedProfileFile($ARGV[0])) { $main::use_symbolized_profile = 1; $main::prog = $UNKNOWN_BINARY; # will be set later from the profile file } } if ($main::use_symbol_page || $main::use_symbolized_profile) { # We don't need a binary! my %disabled = ('--lines' => $main::opt_lines, '--disasm' => $main::opt_disasm); for my $option (keys %disabled) { usage("$option cannot be used without a binary") if $disabled{$option}; } # Set $main::prog later... scalar(@ARGV) || usage("Did not specify profile file"); } elsif ($main::opt_symbols) { # --symbols needs a binary-name (to run nm on, etc) but not profiles $main::prog = shift(@ARGV) || usage("Did not specify program"); } else { $main::prog = shift(@ARGV) || usage("Did not specify program"); scalar(@ARGV) || usage("Did not specify profile file"); } # Parse profile file/location arguments foreach my $farg (@ARGV) { if ($farg =~ m/(.*)\@([0-9]+)(|\/.*)$/ ) { my $machine = $1; my $num_machines = $2; my $path = $3; for (my $i = 0; $i < $num_machines; $i++) { unshift(@main::pfile_args, "$i.$machine$path"); } } else { unshift(@main::pfile_args, $farg); } } if ($main::use_symbol_page) { unless (IsProfileURL($main::pfile_args[0])) { error("The first profile should be a remote form to use $SYMBOL_PAGE\n"); } CheckSymbolPage(); $main::prog = FetchProgramName(); } elsif (!$main::use_symbolized_profile) { # may not need objtools! ConfigureObjTools($main::prog) } # Break the opt_lib_prefix into the prefix_list array @prefix_list = split (',', $main::opt_lib_prefix); # Remove trailing / from the prefixes, in the list to prevent # searching things like /my/path//lib/mylib.so foreach (@prefix_list) { s|/+$||; } } sub FilterAndPrint { my ($profile, $symbols, $libs, $thread) = @_; # Get total data in profile my $total = TotalProfile($profile); # Remove uniniteresting stack items $profile = RemoveUninterestingFrames($symbols, $profile); # Focus? if ($main::opt_focus ne '') { $profile = FocusProfile($symbols, $profile, $main::opt_focus); } # Ignore? if ($main::opt_ignore ne '') { $profile = IgnoreProfile($symbols, $profile, $main::opt_ignore); } my $calls = ExtractCalls($symbols, $profile); # Reduce profiles to required output granularity, and also clean # each stack trace so a given entry exists at most once. my $reduced = ReduceProfile($symbols, $profile); # Get derived profiles my $flat = FlatProfile($reduced); my $cumulative = CumulativeProfile($reduced); # Print if (!$main::opt_interactive) { if ($main::opt_disasm) { PrintDisassembly($libs, $flat, $cumulative, $main::opt_disasm); } elsif ($main::opt_list) { PrintListing($total, $libs, $flat, $cumulative, $main::opt_list, 0); } elsif ($main::opt_text) { # Make sure the output is empty when have nothing to report # (only matters when --heapcheck is given but we must be # compatible with old branches that did not pass --heapcheck always): if ($total != 0) { printf("Total%s: %s %s\n", (defined($thread) ? " (t$thread)" : ""), Unparse($total), Units()); } PrintText($symbols, $flat, $cumulative, -1); } elsif ($main::opt_raw) { PrintSymbolizedProfile($symbols, $profile, $main::prog); } elsif ($main::opt_callgrind) { PrintCallgrind($calls); } else { if (PrintDot($main::prog, $symbols, $profile, $flat, $cumulative, $total)) { if ($main::opt_gv) { RunGV(TempName($main::next_tmpfile, "ps"), ""); } elsif ($main::opt_evince) { RunEvince(TempName($main::next_tmpfile, "pdf"), ""); } elsif ($main::opt_web) { my $tmp = TempName($main::next_tmpfile, "svg"); RunWeb($tmp); # The command we run might hand the file name off # to an already running browser instance and then exit. # Normally, we'd remove $tmp on exit (right now), # but fork a child to remove $tmp a little later, so that the # browser has time to load it first. delete $main::tempnames{$tmp}; if (fork() == 0) { sleep 5; unlink($tmp); exit(0); } } } else { cleanup(); exit(1); } } } else { InteractiveMode($profile, $symbols, $libs, $total); } } sub Main() { Init(); $main::collected_profile = undef; @main::profile_files = (); $main::op_time = time(); # Printing symbols is special and requires a lot less info that most. if ($main::opt_symbols) { PrintSymbols(*STDIN); # Get /proc/maps and symbols output from stdin return; } # Fetch all profile data FetchDynamicProfiles(); # this will hold symbols that we read from the profile files my $symbol_map = {}; # Read one profile, pick the last item on the list my $data = ReadProfile($main::prog, pop(@main::profile_files)); my $profile = $data->{profile}; my $pcs = $data->{pcs}; my $libs = $data->{libs}; # Info about main program and shared libraries $symbol_map = MergeSymbols($symbol_map, $data->{symbols}); # Add additional profiles, if available. if (scalar(@main::profile_files) > 0) { foreach my $pname (@main::profile_files) { my $data2 = ReadProfile($main::prog, $pname); $profile = AddProfile($profile, $data2->{profile}); $pcs = AddPcs($pcs, $data2->{pcs}); $symbol_map = MergeSymbols($symbol_map, $data2->{symbols}); } } # Subtract base from profile, if specified if ($main::opt_base ne '') { my $base = ReadProfile($main::prog, $main::opt_base); $profile = SubtractProfile($profile, $base->{profile}); $pcs = AddPcs($pcs, $base->{pcs}); $symbol_map = MergeSymbols($symbol_map, $base->{symbols}); } # Collect symbols my $symbols; if ($main::use_symbolized_profile) { $symbols = FetchSymbols($pcs, $symbol_map); } elsif ($main::use_symbol_page) { $symbols = FetchSymbols($pcs); } else { # TODO(csilvers): $libs uses the /proc/self/maps data from profile1, # which may differ from the data from subsequent profiles, especially # if they were run on different machines. Use appropriate libs for # each pc somehow. $symbols = ExtractSymbols($libs, $pcs); } if (!defined($main::opt_thread)) { FilterAndPrint($profile, $symbols, $libs); } if (defined($data->{threads})) { foreach my $thread (sort { $a <=> $b } keys(%{$data->{threads}})) { if (defined($main::opt_thread) && ($main::opt_thread eq '*' || $main::opt_thread == $thread)) { my $thread_profile = $data->{threads}{$thread}; FilterAndPrint($thread_profile, $symbols, $libs, $thread); } } } cleanup(); exit(0); } ##### Entry Point ##### Main(); # Temporary code to detect if we're running on a Goobuntu system. # These systems don't have the right stuff installed for the special # Readline libraries to work, so as a temporary workaround, we default # to using the normal stdio code, rather than the fancier readline-based # code sub ReadlineMightFail { if (-e '/lib/libtermcap.so.2') { return 0; # libtermcap exists, so readline should be okay } else { return 1; } } sub RunGV { my $fname = shift; my $bg = shift; # "" or " &" if we should run in background if (!system(ShellEscape(@GV, "--version") . " >$dev_null 2>&1")) { # Options using double dash are supported by this gv version. # Also, turn on noantialias to better handle bug in gv for # postscript files with large dimensions. # TODO: Maybe we should not pass the --noantialias flag # if the gv version is known to work properly without the flag. system(ShellEscape(@GV, "--scale=$main::opt_scale", "--noantialias", $fname) . $bg); } else { # Old gv version - only supports options that use single dash. print STDERR ShellEscape(@GV, "-scale", $main::opt_scale) . "\n"; system(ShellEscape(@GV, "-scale", "$main::opt_scale", $fname) . $bg); } } sub RunEvince { my $fname = shift; my $bg = shift; # "" or " &" if we should run in background system(ShellEscape(@EVINCE, $fname) . $bg); } sub RunWeb { my $fname = shift; print STDERR "Loading web page file:///$fname\n"; if (`uname` =~ /Darwin/) { # OS X: open will use standard preference for SVG files. system("/usr/bin/open", $fname); return; } # Some kind of Unix; try generic symlinks, then specific browsers. # (Stop once we find one.) # Works best if the browser is already running. my @alt = ( "/etc/alternatives/gnome-www-browser", "/etc/alternatives/x-www-browser", "google-chrome", "firefox", ); foreach my $b (@alt) { if (system($b, $fname) == 0) { return; } } print STDERR "Could not load web browser.\n"; } sub RunKcachegrind { my $fname = shift; my $bg = shift; # "" or " &" if we should run in background print STDERR "Starting '@KCACHEGRIND " . $fname . $bg . "'\n"; system(ShellEscape(@KCACHEGRIND, $fname) . $bg); } ##### Interactive helper routines ##### sub InteractiveMode { $| = 1; # Make output unbuffered for interactive mode my ($orig_profile, $symbols, $libs, $total) = @_; print STDERR "Welcome to jeprof! For help, type 'help'.\n"; # Use ReadLine if it's installed and input comes from a console. if ( -t STDIN && !ReadlineMightFail() && defined(eval {require Term::ReadLine}) ) { my $term = new Term::ReadLine 'jeprof'; while ( defined ($_ = $term->readline('(jeprof) '))) { $term->addhistory($_) if /\S/; if (!InteractiveCommand($orig_profile, $symbols, $libs, $total, $_)) { last; # exit when we get an interactive command to quit } } } else { # don't have readline while (1) { print STDERR "(jeprof) "; $_ = ; last if ! defined $_ ; s/\r//g; # turn windows-looking lines into unix-looking lines # Save some flags that might be reset by InteractiveCommand() my $save_opt_lines = $main::opt_lines; if (!InteractiveCommand($orig_profile, $symbols, $libs, $total, $_)) { last; # exit when we get an interactive command to quit } # Restore flags $main::opt_lines = $save_opt_lines; } } } # Takes two args: orig profile, and command to run. # Returns 1 if we should keep going, or 0 if we were asked to quit sub InteractiveCommand { my($orig_profile, $symbols, $libs, $total, $command) = @_; $_ = $command; # just to make future m//'s easier if (!defined($_)) { print STDERR "\n"; return 0; } if (m/^\s*quit/) { return 0; } if (m/^\s*help/) { InteractiveHelpMessage(); return 1; } # Clear all the mode options -- mode is controlled by "$command" $main::opt_text = 0; $main::opt_callgrind = 0; $main::opt_disasm = 0; $main::opt_list = 0; $main::opt_gv = 0; $main::opt_evince = 0; $main::opt_cum = 0; if (m/^\s*(text|top)(\d*)\s*(.*)/) { $main::opt_text = 1; my $line_limit = ($2 ne "") ? int($2) : 10; my $routine; my $ignore; ($routine, $ignore) = ParseInteractiveArgs($3); my $profile = ProcessProfile($total, $orig_profile, $symbols, "", $ignore); my $reduced = ReduceProfile($symbols, $profile); # Get derived profiles my $flat = FlatProfile($reduced); my $cumulative = CumulativeProfile($reduced); PrintText($symbols, $flat, $cumulative, $line_limit); return 1; } if (m/^\s*callgrind\s*([^ \n]*)/) { $main::opt_callgrind = 1; # Get derived profiles my $calls = ExtractCalls($symbols, $orig_profile); my $filename = $1; if ( $1 eq '' ) { $filename = TempName($main::next_tmpfile, "callgrind"); } PrintCallgrind($calls, $filename); if ( $1 eq '' ) { RunKcachegrind($filename, " & "); $main::next_tmpfile++; } return 1; } if (m/^\s*(web)?list\s*(.+)/) { my $html = (defined($1) && ($1 eq "web")); $main::opt_list = 1; my $routine; my $ignore; ($routine, $ignore) = ParseInteractiveArgs($2); my $profile = ProcessProfile($total, $orig_profile, $symbols, "", $ignore); my $reduced = ReduceProfile($symbols, $profile); # Get derived profiles my $flat = FlatProfile($reduced); my $cumulative = CumulativeProfile($reduced); PrintListing($total, $libs, $flat, $cumulative, $routine, $html); return 1; } if (m/^\s*disasm\s*(.+)/) { $main::opt_disasm = 1; my $routine; my $ignore; ($routine, $ignore) = ParseInteractiveArgs($1); # Process current profile to account for various settings my $profile = ProcessProfile($total, $orig_profile, $symbols, "", $ignore); my $reduced = ReduceProfile($symbols, $profile); # Get derived profiles my $flat = FlatProfile($reduced); my $cumulative = CumulativeProfile($reduced); PrintDisassembly($libs, $flat, $cumulative, $routine); return 1; } if (m/^\s*(gv|web|evince)\s*(.*)/) { $main::opt_gv = 0; $main::opt_evince = 0; $main::opt_web = 0; if ($1 eq "gv") { $main::opt_gv = 1; } elsif ($1 eq "evince") { $main::opt_evince = 1; } elsif ($1 eq "web") { $main::opt_web = 1; } my $focus; my $ignore; ($focus, $ignore) = ParseInteractiveArgs($2); # Process current profile to account for various settings my $profile = ProcessProfile($total, $orig_profile, $symbols, $focus, $ignore); my $reduced = ReduceProfile($symbols, $profile); # Get derived profiles my $flat = FlatProfile($reduced); my $cumulative = CumulativeProfile($reduced); if (PrintDot($main::prog, $symbols, $profile, $flat, $cumulative, $total)) { if ($main::opt_gv) { RunGV(TempName($main::next_tmpfile, "ps"), " &"); } elsif ($main::opt_evince) { RunEvince(TempName($main::next_tmpfile, "pdf"), " &"); } elsif ($main::opt_web) { RunWeb(TempName($main::next_tmpfile, "svg")); } $main::next_tmpfile++; } return 1; } if (m/^\s*$/) { return 1; } print STDERR "Unknown command: try 'help'.\n"; return 1; } sub ProcessProfile { my $total_count = shift; my $orig_profile = shift; my $symbols = shift; my $focus = shift; my $ignore = shift; # Process current profile to account for various settings my $profile = $orig_profile; printf("Total: %s %s\n", Unparse($total_count), Units()); if ($focus ne '') { $profile = FocusProfile($symbols, $profile, $focus); my $focus_count = TotalProfile($profile); printf("After focusing on '%s': %s %s of %s (%0.1f%%)\n", $focus, Unparse($focus_count), Units(), Unparse($total_count), ($focus_count*100.0) / $total_count); } if ($ignore ne '') { $profile = IgnoreProfile($symbols, $profile, $ignore); my $ignore_count = TotalProfile($profile); printf("After ignoring '%s': %s %s of %s (%0.1f%%)\n", $ignore, Unparse($ignore_count), Units(), Unparse($total_count), ($ignore_count*100.0) / $total_count); } return $profile; } sub InteractiveHelpMessage { print STDERR <{$k}; my @addrs = split(/\n/, $k); if ($#addrs >= 0) { my $depth = $#addrs + 1; # int(foo / 2**32) is the only reliable way to get rid of bottom # 32 bits on both 32- and 64-bit systems. print pack('L*', $count & 0xFFFFFFFF, int($count / 2**32)); print pack('L*', $depth & 0xFFFFFFFF, int($depth / 2**32)); foreach my $full_addr (@addrs) { my $addr = $full_addr; $addr =~ s/0x0*//; # strip off leading 0x, zeroes if (length($addr) > 16) { print STDERR "Invalid address in profile: $full_addr\n"; next; } my $low_addr = substr($addr, -8); # get last 8 hex chars my $high_addr = substr($addr, -16, 8); # get up to 8 more hex chars print pack('L*', hex('0x' . $low_addr), hex('0x' . $high_addr)); } } } } # Print symbols and profile data sub PrintSymbolizedProfile { my $symbols = shift; my $profile = shift; my $prog = shift; $SYMBOL_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $symbol_marker = $&; print '--- ', $symbol_marker, "\n"; if (defined($prog)) { print 'binary=', $prog, "\n"; } while (my ($pc, $name) = each(%{$symbols})) { my $sep = ' '; print '0x', $pc; # We have a list of function names, which include the inlined # calls. They are separated (and terminated) by --, which is # illegal in function names. for (my $j = 2; $j <= $#{$name}; $j += 3) { print $sep, $name->[$j]; $sep = '--'; } print "\n"; } print '---', "\n"; my $profile_marker; if ($main::profile_type eq 'heap') { $HEAP_PAGE =~ m,[^/]+$,; # matches everything after the last slash $profile_marker = $&; } elsif ($main::profile_type eq 'growth') { $GROWTH_PAGE =~ m,[^/]+$,; # matches everything after the last slash $profile_marker = $&; } elsif ($main::profile_type eq 'contention') { $CONTENTION_PAGE =~ m,[^/]+$,; # matches everything after the last slash $profile_marker = $&; } else { # elsif ($main::profile_type eq 'cpu') $PROFILE_PAGE =~ m,[^/]+$,; # matches everything after the last slash $profile_marker = $&; } print '--- ', $profile_marker, "\n"; if (defined($main::collected_profile)) { # if used with remote fetch, simply dump the collected profile to output. open(SRC, "<$main::collected_profile"); while () { print $_; } close(SRC); } else { # --raw/http: For everything to work correctly for non-remote profiles, we # would need to extend PrintProfileData() to handle all possible profile # types, re-enable the code that is currently disabled in ReadCPUProfile() # and FixCallerAddresses(), and remove the remote profile dumping code in # the block above. die "--raw/http: jeprof can only dump remote profiles for --raw\n"; # dump a cpu-format profile to standard out PrintProfileData($profile); } } # Print text output sub PrintText { my $symbols = shift; my $flat = shift; my $cumulative = shift; my $line_limit = shift; my $total = TotalProfile($flat); # Which profile to sort by? my $s = $main::opt_cum ? $cumulative : $flat; my $running_sum = 0; my $lines = 0; foreach my $k (sort { GetEntry($s, $b) <=> GetEntry($s, $a) || $a cmp $b } keys(%{$cumulative})) { my $f = GetEntry($flat, $k); my $c = GetEntry($cumulative, $k); $running_sum += $f; my $sym = $k; if (exists($symbols->{$k})) { $sym = $symbols->{$k}->[0] . " " . $symbols->{$k}->[1]; if ($main::opt_addresses) { $sym = $k . " " . $sym; } } if ($f != 0 || $c != 0) { printf("%8s %6s %6s %8s %6s %s\n", Unparse($f), Percent($f, $total), Percent($running_sum, $total), Unparse($c), Percent($c, $total), $sym); } $lines++; last if ($line_limit >= 0 && $lines >= $line_limit); } } # Callgrind format has a compression for repeated function and file # names. You show the name the first time, and just use its number # subsequently. This can cut down the file to about a third or a # quarter of its uncompressed size. $key and $val are the key/value # pair that would normally be printed by callgrind; $map is a map from # value to number. sub CompressedCGName { my($key, $val, $map) = @_; my $idx = $map->{$val}; # For very short keys, providing an index hurts rather than helps. if (length($val) <= 3) { return "$key=$val\n"; } elsif (defined($idx)) { return "$key=($idx)\n"; } else { # scalar(keys $map) gives the number of items in the map. $idx = scalar(keys(%{$map})) + 1; $map->{$val} = $idx; return "$key=($idx) $val\n"; } } # Print the call graph in a way that's suiteable for callgrind. sub PrintCallgrind { my $calls = shift; my $filename; my %filename_to_index_map; my %fnname_to_index_map; if ($main::opt_interactive) { $filename = shift; print STDERR "Writing callgrind file to '$filename'.\n" } else { $filename = "&STDOUT"; } open(CG, ">$filename"); printf CG ("events: Hits\n\n"); foreach my $call ( map { $_->[0] } sort { $a->[1] cmp $b ->[1] || $a->[2] <=> $b->[2] } map { /([^:]+):(\d+):([^ ]+)( -> ([^:]+):(\d+):(.+))?/; [$_, $1, $2] } keys %$calls ) { my $count = int($calls->{$call}); $call =~ /([^:]+):(\d+):([^ ]+)( -> ([^:]+):(\d+):(.+))?/; my ( $caller_file, $caller_line, $caller_function, $callee_file, $callee_line, $callee_function ) = ( $1, $2, $3, $5, $6, $7 ); # TODO(csilvers): for better compression, collect all the # caller/callee_files and functions first, before printing # anything, and only compress those referenced more than once. printf CG CompressedCGName("fl", $caller_file, \%filename_to_index_map); printf CG CompressedCGName("fn", $caller_function, \%fnname_to_index_map); if (defined $6) { printf CG CompressedCGName("cfl", $callee_file, \%filename_to_index_map); printf CG CompressedCGName("cfn", $callee_function, \%fnname_to_index_map); printf CG ("calls=$count $callee_line\n"); } printf CG ("$caller_line $count\n\n"); } } # Print disassembly for all all routines that match $main::opt_disasm sub PrintDisassembly { my $libs = shift; my $flat = shift; my $cumulative = shift; my $disasm_opts = shift; my $total = TotalProfile($flat); foreach my $lib (@{$libs}) { my $symbol_table = GetProcedureBoundaries($lib->[0], $disasm_opts); my $offset = AddressSub($lib->[1], $lib->[3]); foreach my $routine (sort ByName keys(%{$symbol_table})) { my $start_addr = $symbol_table->{$routine}->[0]; my $end_addr = $symbol_table->{$routine}->[1]; # See if there are any samples in this routine my $length = hex(AddressSub($end_addr, $start_addr)); my $addr = AddressAdd($start_addr, $offset); for (my $i = 0; $i < $length; $i++) { if (defined($cumulative->{$addr})) { PrintDisassembledFunction($lib->[0], $offset, $routine, $flat, $cumulative, $start_addr, $end_addr, $total); last; } $addr = AddressInc($addr); } } } } # Return reference to array of tuples of the form: # [start_address, filename, linenumber, instruction, limit_address] # E.g., # ["0x806c43d", "/foo/bar.cc", 131, "ret", "0x806c440"] sub Disassemble { my $prog = shift; my $offset = shift; my $start_addr = shift; my $end_addr = shift; my $objdump = $obj_tool_map{"objdump"}; my $cmd = ShellEscape($objdump, "-C", "-d", "-l", "--no-show-raw-insn", "--start-address=0x$start_addr", "--stop-address=0x$end_addr", $prog); open(OBJDUMP, "$cmd |") || error("$cmd: $!\n"); my @result = (); my $filename = ""; my $linenumber = -1; my $last = ["", "", "", ""]; while () { s/\r//g; # turn windows-looking lines into unix-looking lines chop; if (m|\s*([^:\s]+):(\d+)\s*$|) { # Location line of the form: # : $filename = $1; $linenumber = $2; } elsif (m/^ +([0-9a-f]+):\s*(.*)/) { # Disassembly line -- zero-extend address to full length my $addr = HexExtend($1); my $k = AddressAdd($addr, $offset); $last->[4] = $k; # Store ending address for previous instruction $last = [$k, $filename, $linenumber, $2, $end_addr]; push(@result, $last); } } close(OBJDUMP); return @result; } # The input file should contain lines of the form /proc/maps-like # output (same format as expected from the profiles) or that looks # like hex addresses (like "0xDEADBEEF"). We will parse all # /proc/maps output, and for all the hex addresses, we will output # "short" symbol names, one per line, in the same order as the input. sub PrintSymbols { my $maps_and_symbols_file = shift; # ParseLibraries expects pcs to be in a set. Fine by us... my @pclist = (); # pcs in sorted order my $pcs = {}; my $map = ""; foreach my $line (<$maps_and_symbols_file>) { $line =~ s/\r//g; # turn windows-looking lines into unix-looking lines if ($line =~ /\b(0x[0-9a-f]+)\b/i) { push(@pclist, HexExtend($1)); $pcs->{$pclist[-1]} = 1; } else { $map .= $line; } } my $libs = ParseLibraries($main::prog, $map, $pcs); my $symbols = ExtractSymbols($libs, $pcs); foreach my $pc (@pclist) { # ->[0] is the shortname, ->[2] is the full name print(($symbols->{$pc}->[0] || "??") . "\n"); } } # For sorting functions by name sub ByName { return ShortFunctionName($a) cmp ShortFunctionName($b); } # Print source-listing for all all routines that match $list_opts sub PrintListing { my $total = shift; my $libs = shift; my $flat = shift; my $cumulative = shift; my $list_opts = shift; my $html = shift; my $output = \*STDOUT; my $fname = ""; if ($html) { # Arrange to write the output to a temporary file $fname = TempName($main::next_tmpfile, "html"); $main::next_tmpfile++; if (!open(TEMP, ">$fname")) { print STDERR "$fname: $!\n"; return; } $output = \*TEMP; print $output HtmlListingHeader(); printf $output ("
%s
Total: %s %s
\n", $main::prog, Unparse($total), Units()); } my $listed = 0; foreach my $lib (@{$libs}) { my $symbol_table = GetProcedureBoundaries($lib->[0], $list_opts); my $offset = AddressSub($lib->[1], $lib->[3]); foreach my $routine (sort ByName keys(%{$symbol_table})) { # Print if there are any samples in this routine my $start_addr = $symbol_table->{$routine}->[0]; my $end_addr = $symbol_table->{$routine}->[1]; my $length = hex(AddressSub($end_addr, $start_addr)); my $addr = AddressAdd($start_addr, $offset); for (my $i = 0; $i < $length; $i++) { if (defined($cumulative->{$addr})) { $listed += PrintSource( $lib->[0], $offset, $routine, $flat, $cumulative, $start_addr, $end_addr, $html, $output); last; } $addr = AddressInc($addr); } } } if ($html) { if ($listed > 0) { print $output HtmlListingFooter(); close($output); RunWeb($fname); } else { close($output); unlink($fname); } } } sub HtmlListingHeader { return <<'EOF'; Pprof listing EOF } sub HtmlListingFooter { return <<'EOF'; EOF } sub HtmlEscape { my $text = shift; $text =~ s/&/&/g; $text =~ s//>/g; return $text; } # Returns the indentation of the line, if it has any non-whitespace # characters. Otherwise, returns -1. sub Indentation { my $line = shift; if (m/^(\s*)\S/) { return length($1); } else { return -1; } } # If the symbol table contains inlining info, Disassemble() may tag an # instruction with a location inside an inlined function. But for # source listings, we prefer to use the location in the function we # are listing. So use MapToSymbols() to fetch full location # information for each instruction and then pick out the first # location from a location list (location list contains callers before # callees in case of inlining). # # After this routine has run, each entry in $instructions contains: # [0] start address # [1] filename for function we are listing # [2] line number for function we are listing # [3] disassembly # [4] limit address # [5] most specific filename (may be different from [1] due to inlining) # [6] most specific line number (may be different from [2] due to inlining) sub GetTopLevelLineNumbers { my ($lib, $offset, $instructions) = @_; my $pcs = []; for (my $i = 0; $i <= $#{$instructions}; $i++) { push(@{$pcs}, $instructions->[$i]->[0]); } my $symbols = {}; MapToSymbols($lib, $offset, $pcs, $symbols); for (my $i = 0; $i <= $#{$instructions}; $i++) { my $e = $instructions->[$i]; push(@{$e}, $e->[1]); push(@{$e}, $e->[2]); my $addr = $e->[0]; my $sym = $symbols->{$addr}; if (defined($sym)) { if ($#{$sym} >= 2 && $sym->[1] =~ m/^(.*):(\d+)$/) { $e->[1] = $1; # File name $e->[2] = $2; # Line number } } } } # Print source-listing for one routine sub PrintSource { my $prog = shift; my $offset = shift; my $routine = shift; my $flat = shift; my $cumulative = shift; my $start_addr = shift; my $end_addr = shift; my $html = shift; my $output = shift; # Disassemble all instructions (just to get line numbers) my @instructions = Disassemble($prog, $offset, $start_addr, $end_addr); GetTopLevelLineNumbers($prog, $offset, \@instructions); # Hack 1: assume that the first source file encountered in the # disassembly contains the routine my $filename = undef; for (my $i = 0; $i <= $#instructions; $i++) { if ($instructions[$i]->[2] >= 0) { $filename = $instructions[$i]->[1]; last; } } if (!defined($filename)) { print STDERR "no filename found in $routine\n"; return 0; } # Hack 2: assume that the largest line number from $filename is the # end of the procedure. This is typically safe since if P1 contains # an inlined call to P2, then P2 usually occurs earlier in the # source file. If this does not work, we might have to compute a # density profile or just print all regions we find. my $lastline = 0; for (my $i = 0; $i <= $#instructions; $i++) { my $f = $instructions[$i]->[1]; my $l = $instructions[$i]->[2]; if (($f eq $filename) && ($l > $lastline)) { $lastline = $l; } } # Hack 3: assume the first source location from "filename" is the start of # the source code. my $firstline = 1; for (my $i = 0; $i <= $#instructions; $i++) { if ($instructions[$i]->[1] eq $filename) { $firstline = $instructions[$i]->[2]; last; } } # Hack 4: Extend last line forward until its indentation is less than # the indentation we saw on $firstline my $oldlastline = $lastline; { if (!open(FILE, "<$filename")) { print STDERR "$filename: $!\n"; return 0; } my $l = 0; my $first_indentation = -1; while () { s/\r//g; # turn windows-looking lines into unix-looking lines $l++; my $indent = Indentation($_); if ($l >= $firstline) { if ($first_indentation < 0 && $indent >= 0) { $first_indentation = $indent; last if ($first_indentation == 0); } } if ($l >= $lastline && $indent >= 0) { if ($indent >= $first_indentation) { $lastline = $l+1; } else { last; } } } close(FILE); } # Assign all samples to the range $firstline,$lastline, # Hack 4: If an instruction does not occur in the range, its samples # are moved to the next instruction that occurs in the range. my $samples1 = {}; # Map from line number to flat count my $samples2 = {}; # Map from line number to cumulative count my $running1 = 0; # Unassigned flat counts my $running2 = 0; # Unassigned cumulative counts my $total1 = 0; # Total flat counts my $total2 = 0; # Total cumulative counts my %disasm = (); # Map from line number to disassembly my $running_disasm = ""; # Unassigned disassembly my $skip_marker = "---\n"; if ($html) { $skip_marker = ""; for (my $l = $firstline; $l <= $lastline; $l++) { $disasm{$l} = ""; } } my $last_dis_filename = ''; my $last_dis_linenum = -1; my $last_touched_line = -1; # To detect gaps in disassembly for a line foreach my $e (@instructions) { # Add up counts for all address that fall inside this instruction my $c1 = 0; my $c2 = 0; for (my $a = $e->[0]; $a lt $e->[4]; $a = AddressInc($a)) { $c1 += GetEntry($flat, $a); $c2 += GetEntry($cumulative, $a); } if ($html) { my $dis = sprintf(" %6s %6s \t\t%8s: %s ", HtmlPrintNumber($c1), HtmlPrintNumber($c2), UnparseAddress($offset, $e->[0]), CleanDisassembly($e->[3])); # Append the most specific source line associated with this instruction if (length($dis) < 80) { $dis .= (' ' x (80 - length($dis))) }; $dis = HtmlEscape($dis); my $f = $e->[5]; my $l = $e->[6]; if ($f ne $last_dis_filename) { $dis .= sprintf("%s:%d", HtmlEscape(CleanFileName($f)), $l); } elsif ($l ne $last_dis_linenum) { # De-emphasize the unchanged file name portion $dis .= sprintf("%s" . ":%d", HtmlEscape(CleanFileName($f)), $l); } else { # De-emphasize the entire location $dis .= sprintf("%s:%d", HtmlEscape(CleanFileName($f)), $l); } $last_dis_filename = $f; $last_dis_linenum = $l; $running_disasm .= $dis; $running_disasm .= "\n"; } $running1 += $c1; $running2 += $c2; $total1 += $c1; $total2 += $c2; my $file = $e->[1]; my $line = $e->[2]; if (($file eq $filename) && ($line >= $firstline) && ($line <= $lastline)) { # Assign all accumulated samples to this line AddEntry($samples1, $line, $running1); AddEntry($samples2, $line, $running2); $running1 = 0; $running2 = 0; if ($html) { if ($line != $last_touched_line && $disasm{$line} ne '') { $disasm{$line} .= "\n"; } $disasm{$line} .= $running_disasm; $running_disasm = ''; $last_touched_line = $line; } } } # Assign any leftover samples to $lastline AddEntry($samples1, $lastline, $running1); AddEntry($samples2, $lastline, $running2); if ($html) { if ($lastline != $last_touched_line && $disasm{$lastline} ne '') { $disasm{$lastline} .= "\n"; } $disasm{$lastline} .= $running_disasm; } if ($html) { printf $output ( "

%s

%s\n
\n" .
      "Total:%6s %6s (flat / cumulative %s)\n",
      HtmlEscape(ShortFunctionName($routine)),
      HtmlEscape(CleanFileName($filename)),
      Unparse($total1),
      Unparse($total2),
      Units());
  } else {
    printf $output (
      "ROUTINE ====================== %s in %s\n" .
      "%6s %6s Total %s (flat / cumulative)\n",
      ShortFunctionName($routine),
      CleanFileName($filename),
      Unparse($total1),
      Unparse($total2),
      Units());
  }
  if (!open(FILE, "<$filename")) {
    print STDERR "$filename: $!\n";
    return 0;
  }
  my $l = 0;
  while () {
    s/\r//g;         # turn windows-looking lines into unix-looking lines
    $l++;
    if ($l >= $firstline - 5 &&
        (($l <= $oldlastline + 5) || ($l <= $lastline))) {
      chop;
      my $text = $_;
      if ($l == $firstline) { print $output $skip_marker; }
      my $n1 = GetEntry($samples1, $l);
      my $n2 = GetEntry($samples2, $l);
      if ($html) {
        # Emit a span that has one of the following classes:
        #    livesrc -- has samples
        #    deadsrc -- has disassembly, but with no samples
        #    nop     -- has no matching disasembly
        # Also emit an optional span containing disassembly.
        my $dis = $disasm{$l};
        my $asm = "";
        if (defined($dis) && $dis ne '') {
          $asm = "" . $dis . "";
        }
        my $source_class = (($n1 + $n2 > 0)
                            ? "livesrc"
                            : (($asm ne "") ? "deadsrc" : "nop"));
        printf $output (
          "%5d " .
          "%6s %6s %s%s\n",
          $l, $source_class,
          HtmlPrintNumber($n1),
          HtmlPrintNumber($n2),
          HtmlEscape($text),
          $asm);
      } else {
        printf $output(
          "%6s %6s %4d: %s\n",
          UnparseAlt($n1),
          UnparseAlt($n2),
          $l,
          $text);
      }
      if ($l == $lastline)  { print $output $skip_marker; }
    };
  }
  close(FILE);
  if ($html) {
    print $output "
\n"; } return 1; } # Return the source line for the specified file/linenumber. # Returns undef if not found. sub SourceLine { my $file = shift; my $line = shift; # Look in cache if (!defined($main::source_cache{$file})) { if (100 < scalar keys(%main::source_cache)) { # Clear the cache when it gets too big $main::source_cache = (); } # Read all lines from the file if (!open(FILE, "<$file")) { print STDERR "$file: $!\n"; $main::source_cache{$file} = []; # Cache the negative result return undef; } my $lines = []; push(@{$lines}, ""); # So we can use 1-based line numbers as indices while () { push(@{$lines}, $_); } close(FILE); # Save the lines in the cache $main::source_cache{$file} = $lines; } my $lines = $main::source_cache{$file}; if (($line < 0) || ($line > $#{$lines})) { return undef; } else { return $lines->[$line]; } } # Print disassembly for one routine with interspersed source if available sub PrintDisassembledFunction { my $prog = shift; my $offset = shift; my $routine = shift; my $flat = shift; my $cumulative = shift; my $start_addr = shift; my $end_addr = shift; my $total = shift; # Disassemble all instructions my @instructions = Disassemble($prog, $offset, $start_addr, $end_addr); # Make array of counts per instruction my @flat_count = (); my @cum_count = (); my $flat_total = 0; my $cum_total = 0; foreach my $e (@instructions) { # Add up counts for all address that fall inside this instruction my $c1 = 0; my $c2 = 0; for (my $a = $e->[0]; $a lt $e->[4]; $a = AddressInc($a)) { $c1 += GetEntry($flat, $a); $c2 += GetEntry($cumulative, $a); } push(@flat_count, $c1); push(@cum_count, $c2); $flat_total += $c1; $cum_total += $c2; } # Print header with total counts printf("ROUTINE ====================== %s\n" . "%6s %6s %s (flat, cumulative) %.1f%% of total\n", ShortFunctionName($routine), Unparse($flat_total), Unparse($cum_total), Units(), ($cum_total * 100.0) / $total); # Process instructions in order my $current_file = ""; for (my $i = 0; $i <= $#instructions; ) { my $e = $instructions[$i]; # Print the new file name whenever we switch files if ($e->[1] ne $current_file) { $current_file = $e->[1]; my $fname = $current_file; $fname =~ s|^\./||; # Trim leading "./" # Shorten long file names if (length($fname) >= 58) { $fname = "..." . substr($fname, -55); } printf("-------------------- %s\n", $fname); } # TODO: Compute range of lines to print together to deal with # small reorderings. my $first_line = $e->[2]; my $last_line = $first_line; my %flat_sum = (); my %cum_sum = (); for (my $l = $first_line; $l <= $last_line; $l++) { $flat_sum{$l} = 0; $cum_sum{$l} = 0; } # Find run of instructions for this range of source lines my $first_inst = $i; while (($i <= $#instructions) && ($instructions[$i]->[2] >= $first_line) && ($instructions[$i]->[2] <= $last_line)) { $e = $instructions[$i]; $flat_sum{$e->[2]} += $flat_count[$i]; $cum_sum{$e->[2]} += $cum_count[$i]; $i++; } my $last_inst = $i - 1; # Print source lines for (my $l = $first_line; $l <= $last_line; $l++) { my $line = SourceLine($current_file, $l); if (!defined($line)) { $line = "?\n"; next; } else { $line =~ s/^\s+//; } printf("%6s %6s %5d: %s", UnparseAlt($flat_sum{$l}), UnparseAlt($cum_sum{$l}), $l, $line); } # Print disassembly for (my $x = $first_inst; $x <= $last_inst; $x++) { my $e = $instructions[$x]; printf("%6s %6s %8s: %6s\n", UnparseAlt($flat_count[$x]), UnparseAlt($cum_count[$x]), UnparseAddress($offset, $e->[0]), CleanDisassembly($e->[3])); } } } # Print DOT graph sub PrintDot { my $prog = shift; my $symbols = shift; my $raw = shift; my $flat = shift; my $cumulative = shift; my $overall_total = shift; # Get total my $local_total = TotalProfile($flat); my $nodelimit = int($main::opt_nodefraction * $local_total); my $edgelimit = int($main::opt_edgefraction * $local_total); my $nodecount = $main::opt_nodecount; # Find nodes to include my @list = (sort { abs(GetEntry($cumulative, $b)) <=> abs(GetEntry($cumulative, $a)) || $a cmp $b } keys(%{$cumulative})); my $last = $nodecount - 1; if ($last > $#list) { $last = $#list; } while (($last >= 0) && (abs(GetEntry($cumulative, $list[$last])) <= $nodelimit)) { $last--; } if ($last < 0) { print STDERR "No nodes to print\n"; return 0; } if ($nodelimit > 0 || $edgelimit > 0) { printf STDERR ("Dropping nodes with <= %s %s; edges with <= %s abs(%s)\n", Unparse($nodelimit), Units(), Unparse($edgelimit), Units()); } # Open DOT output file my $output; my $escaped_dot = ShellEscape(@DOT); my $escaped_ps2pdf = ShellEscape(@PS2PDF); if ($main::opt_gv) { my $escaped_outfile = ShellEscape(TempName($main::next_tmpfile, "ps")); $output = "| $escaped_dot -Tps2 >$escaped_outfile"; } elsif ($main::opt_evince) { my $escaped_outfile = ShellEscape(TempName($main::next_tmpfile, "pdf")); $output = "| $escaped_dot -Tps2 | $escaped_ps2pdf - $escaped_outfile"; } elsif ($main::opt_ps) { $output = "| $escaped_dot -Tps2"; } elsif ($main::opt_pdf) { $output = "| $escaped_dot -Tps2 | $escaped_ps2pdf - -"; } elsif ($main::opt_web || $main::opt_svg) { # We need to post-process the SVG, so write to a temporary file always. my $escaped_outfile = ShellEscape(TempName($main::next_tmpfile, "svg")); $output = "| $escaped_dot -Tsvg >$escaped_outfile"; } elsif ($main::opt_gif) { $output = "| $escaped_dot -Tgif"; } else { $output = ">&STDOUT"; } open(DOT, $output) || error("$output: $!\n"); # Title printf DOT ("digraph \"%s; %s %s\" {\n", $prog, Unparse($overall_total), Units()); if ($main::opt_pdf) { # The output is more printable if we set the page size for dot. printf DOT ("size=\"8,11\"\n"); } printf DOT ("node [width=0.375,height=0.25];\n"); # Print legend printf DOT ("Legend [shape=box,fontsize=24,shape=plaintext," . "label=\"%s\\l%s\\l%s\\l%s\\l%s\\l\"];\n", $prog, sprintf("Total %s: %s", Units(), Unparse($overall_total)), sprintf("Focusing on: %s", Unparse($local_total)), sprintf("Dropped nodes with <= %s abs(%s)", Unparse($nodelimit), Units()), sprintf("Dropped edges with <= %s %s", Unparse($edgelimit), Units()) ); # Print nodes my %node = (); my $nextnode = 1; foreach my $a (@list[0..$last]) { # Pick font size my $f = GetEntry($flat, $a); my $c = GetEntry($cumulative, $a); my $fs = 8; if ($local_total > 0) { $fs = 8 + (50.0 * sqrt(abs($f * 1.0 / $local_total))); } $node{$a} = $nextnode++; my $sym = $a; $sym =~ s/\s+/\\n/g; $sym =~ s/::/\\n/g; # Extra cumulative info to print for non-leaves my $extra = ""; if ($f != $c) { $extra = sprintf("\\rof %s (%s)", Unparse($c), Percent($c, $local_total)); } my $style = ""; if ($main::opt_heapcheck) { if ($f > 0) { # make leak-causing nodes more visible (add a background) $style = ",style=filled,fillcolor=gray" } elsif ($f < 0) { # make anti-leak-causing nodes (which almost never occur) # stand out as well (triple border) $style = ",peripheries=3" } } printf DOT ("N%d [label=\"%s\\n%s (%s)%s\\r" . "\",shape=box,fontsize=%.1f%s];\n", $node{$a}, $sym, Unparse($f), Percent($f, $local_total), $extra, $fs, $style, ); } # Get edges and counts per edge my %edge = (); my $n; my $fullname_to_shortname_map = {}; FillFullnameToShortnameMap($symbols, $fullname_to_shortname_map); foreach my $k (keys(%{$raw})) { # TODO: omit low %age edges $n = $raw->{$k}; my @translated = TranslateStack($symbols, $fullname_to_shortname_map, $k); for (my $i = 1; $i <= $#translated; $i++) { my $src = $translated[$i]; my $dst = $translated[$i-1]; #next if ($src eq $dst); # Avoid self-edges? if (exists($node{$src}) && exists($node{$dst})) { my $edge_label = "$src\001$dst"; if (!exists($edge{$edge_label})) { $edge{$edge_label} = 0; } $edge{$edge_label} += $n; } } } # Print edges (process in order of decreasing counts) my %indegree = (); # Number of incoming edges added per node so far my %outdegree = (); # Number of outgoing edges added per node so far foreach my $e (sort { $edge{$b} <=> $edge{$a} } keys(%edge)) { my @x = split(/\001/, $e); $n = $edge{$e}; # Initialize degree of kept incoming and outgoing edges if necessary my $src = $x[0]; my $dst = $x[1]; if (!exists($outdegree{$src})) { $outdegree{$src} = 0; } if (!exists($indegree{$dst})) { $indegree{$dst} = 0; } my $keep; if ($indegree{$dst} == 0) { # Keep edge if needed for reachability $keep = 1; } elsif (abs($n) <= $edgelimit) { # Drop if we are below --edgefraction $keep = 0; } elsif ($outdegree{$src} >= $main::opt_maxdegree || $indegree{$dst} >= $main::opt_maxdegree) { # Keep limited number of in/out edges per node $keep = 0; } else { $keep = 1; } if ($keep) { $outdegree{$src}++; $indegree{$dst}++; # Compute line width based on edge count my $fraction = abs($local_total ? (3 * ($n / $local_total)) : 0); if ($fraction > 1) { $fraction = 1; } my $w = $fraction * 2; if ($w < 1 && ($main::opt_web || $main::opt_svg)) { # SVG output treats line widths < 1 poorly. $w = 1; } # Dot sometimes segfaults if given edge weights that are too large, so # we cap the weights at a large value my $edgeweight = abs($n) ** 0.7; if ($edgeweight > 100000) { $edgeweight = 100000; } $edgeweight = int($edgeweight); my $style = sprintf("setlinewidth(%f)", $w); if ($x[1] =~ m/\(inline\)/) { $style .= ",dashed"; } # Use a slightly squashed function of the edge count as the weight printf DOT ("N%s -> N%s [label=%s, weight=%d, style=\"%s\"];\n", $node{$x[0]}, $node{$x[1]}, Unparse($n), $edgeweight, $style); } } print DOT ("}\n"); close(DOT); if ($main::opt_web || $main::opt_svg) { # Rewrite SVG to be more usable inside web browser. RewriteSvg(TempName($main::next_tmpfile, "svg")); } return 1; } sub RewriteSvg { my $svgfile = shift; open(SVG, $svgfile) || die "open temp svg: $!"; my @svg = ; close(SVG); unlink $svgfile; my $svg = join('', @svg); # Dot's SVG output is # # # # ... # # # # Change it to # # # $svg_javascript # # # ... # # # # Fix width, height; drop viewBox. $svg =~ s/(?s) above first my $svg_javascript = SvgJavascript(); my $viewport = "\n"; $svg =~ s/ above . $svg =~ s/(.*)(<\/svg>)/$1<\/g>$2/; $svg =~ s/$svgfile") || die "open $svgfile: $!"; print SVG $svg; close(SVG); } } sub SvgJavascript { return <<'EOF'; EOF } # Provides a map from fullname to shortname for cases where the # shortname is ambiguous. The symlist has both the fullname and # shortname for all symbols, which is usually fine, but sometimes -- # such as overloaded functions -- two different fullnames can map to # the same shortname. In that case, we use the address of the # function to disambiguate the two. This function fills in a map that # maps fullnames to modified shortnames in such cases. If a fullname # is not present in the map, the 'normal' shortname provided by the # symlist is the appropriate one to use. sub FillFullnameToShortnameMap { my $symbols = shift; my $fullname_to_shortname_map = shift; my $shortnames_seen_once = {}; my $shortnames_seen_more_than_once = {}; foreach my $symlist (values(%{$symbols})) { # TODO(csilvers): deal with inlined symbols too. my $shortname = $symlist->[0]; my $fullname = $symlist->[2]; if ($fullname !~ /<[0-9a-fA-F]+>$/) { # fullname doesn't end in an address next; # the only collisions we care about are when addresses differ } if (defined($shortnames_seen_once->{$shortname}) && $shortnames_seen_once->{$shortname} ne $fullname) { $shortnames_seen_more_than_once->{$shortname} = 1; } else { $shortnames_seen_once->{$shortname} = $fullname; } } foreach my $symlist (values(%{$symbols})) { my $shortname = $symlist->[0]; my $fullname = $symlist->[2]; # TODO(csilvers): take in a list of addresses we care about, and only # store in the map if $symlist->[1] is in that list. Saves space. next if defined($fullname_to_shortname_map->{$fullname}); if (defined($shortnames_seen_more_than_once->{$shortname})) { if ($fullname =~ /<0*([^>]*)>$/) { # fullname has address at end of it $fullname_to_shortname_map->{$fullname} = "$shortname\@$1"; } } } } # Return a small number that identifies the argument. # Multiple calls with the same argument will return the same number. # Calls with different arguments will return different numbers. sub ShortIdFor { my $key = shift; my $id = $main::uniqueid{$key}; if (!defined($id)) { $id = keys(%main::uniqueid) + 1; $main::uniqueid{$key} = $id; } return $id; } # Translate a stack of addresses into a stack of symbols sub TranslateStack { my $symbols = shift; my $fullname_to_shortname_map = shift; my $k = shift; my @addrs = split(/\n/, $k); my @result = (); for (my $i = 0; $i <= $#addrs; $i++) { my $a = $addrs[$i]; # Skip large addresses since they sometimes show up as fake entries on RH9 if (length($a) > 8 && $a gt "7fffffffffffffff") { next; } if ($main::opt_disasm || $main::opt_list) { # We want just the address for the key push(@result, $a); next; } my $symlist = $symbols->{$a}; if (!defined($symlist)) { $symlist = [$a, "", $a]; } # We can have a sequence of symbols for a particular entry # (more than one symbol in the case of inlining). Callers # come before callees in symlist, so walk backwards since # the translated stack should contain callees before callers. for (my $j = $#{$symlist}; $j >= 2; $j -= 3) { my $func = $symlist->[$j-2]; my $fileline = $symlist->[$j-1]; my $fullfunc = $symlist->[$j]; if (defined($fullname_to_shortname_map->{$fullfunc})) { $func = $fullname_to_shortname_map->{$fullfunc}; } if ($j > 2) { $func = "$func (inline)"; } # Do not merge nodes corresponding to Callback::Run since that # causes confusing cycles in dot display. Instead, we synthesize # a unique name for this frame per caller. if ($func =~ m/Callback.*::Run$/) { my $caller = ($i > 0) ? $addrs[$i-1] : 0; $func = "Run#" . ShortIdFor($caller); } if ($main::opt_addresses) { push(@result, "$a $func $fileline"); } elsif ($main::opt_lines) { if ($func eq '??' && $fileline eq '??:0') { push(@result, "$a"); } else { push(@result, "$func $fileline"); } } elsif ($main::opt_functions) { if ($func eq '??') { push(@result, "$a"); } else { push(@result, $func); } } elsif ($main::opt_files) { if ($fileline eq '??:0' || $fileline eq '') { push(@result, "$a"); } else { my $f = $fileline; $f =~ s/:\d+$//; push(@result, $f); } } else { push(@result, $a); last; # Do not print inlined info } } } # print join(",", @addrs), " => ", join(",", @result), "\n"; return @result; } # Generate percent string for a number and a total sub Percent { my $num = shift; my $tot = shift; if ($tot != 0) { return sprintf("%.1f%%", $num * 100.0 / $tot); } else { return ($num == 0) ? "nan" : (($num > 0) ? "+inf" : "-inf"); } } # Generate pretty-printed form of number sub Unparse { my $num = shift; if ($main::profile_type eq 'heap' || $main::profile_type eq 'growth') { if ($main::opt_inuse_objects || $main::opt_alloc_objects) { return sprintf("%d", $num); } else { if ($main::opt_show_bytes) { return sprintf("%d", $num); } else { return sprintf("%.1f", $num / 1048576.0); } } } elsif ($main::profile_type eq 'contention' && !$main::opt_contentions) { return sprintf("%.3f", $num / 1e9); # Convert nanoseconds to seconds } else { return sprintf("%d", $num); } } # Alternate pretty-printed form: 0 maps to "." sub UnparseAlt { my $num = shift; if ($num == 0) { return "."; } else { return Unparse($num); } } # Alternate pretty-printed form: 0 maps to "" sub HtmlPrintNumber { my $num = shift; if ($num == 0) { return ""; } else { return Unparse($num); } } # Return output units sub Units { if ($main::profile_type eq 'heap' || $main::profile_type eq 'growth') { if ($main::opt_inuse_objects || $main::opt_alloc_objects) { return "objects"; } else { if ($main::opt_show_bytes) { return "B"; } else { return "MB"; } } } elsif ($main::profile_type eq 'contention' && !$main::opt_contentions) { return "seconds"; } else { return "samples"; } } ##### Profile manipulation code ##### # Generate flattened profile: # If count is charged to stack [a,b,c,d], in generated profile, # it will be charged to [a] sub FlatProfile { my $profile = shift; my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); if ($#addrs >= 0) { AddEntry($result, $addrs[0], $count); } } return $result; } # Generate cumulative profile: # If count is charged to stack [a,b,c,d], in generated profile, # it will be charged to [a], [b], [c], [d] sub CumulativeProfile { my $profile = shift; my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); foreach my $a (@addrs) { AddEntry($result, $a, $count); } } return $result; } # If the second-youngest PC on the stack is always the same, returns # that pc. Otherwise, returns undef. sub IsSecondPcAlwaysTheSame { my $profile = shift; my $second_pc = undef; foreach my $k (keys(%{$profile})) { my @addrs = split(/\n/, $k); if ($#addrs < 1) { return undef; } if (not defined $second_pc) { $second_pc = $addrs[1]; } else { if ($second_pc ne $addrs[1]) { return undef; } } } return $second_pc; } sub ExtractSymbolLocation { my $symbols = shift; my $address = shift; # 'addr2line' outputs "??:0" for unknown locations; we do the # same to be consistent. my $location = "??:0:unknown"; if (exists $symbols->{$address}) { my $file = $symbols->{$address}->[1]; if ($file eq "?") { $file = "??:0" } $location = $file . ":" . $symbols->{$address}->[0]; } return $location; } # Extracts a graph of calls. sub ExtractCalls { my $symbols = shift; my $profile = shift; my $calls = {}; while( my ($stack_trace, $count) = each %$profile ) { my @address = split(/\n/, $stack_trace); my $destination = ExtractSymbolLocation($symbols, $address[0]); AddEntry($calls, $destination, $count); for (my $i = 1; $i <= $#address; $i++) { my $source = ExtractSymbolLocation($symbols, $address[$i]); my $call = "$source -> $destination"; AddEntry($calls, $call, $count); $destination = $source; } } return $calls; } sub FilterFrames { my $symbols = shift; my $profile = shift; if ($main::opt_retain eq '' && $main::opt_exclude eq '') { return $profile; } my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); my @path = (); foreach my $a (@addrs) { my $sym; if (exists($symbols->{$a})) { $sym = $symbols->{$a}->[0]; } else { $sym = $a; } if ($main::opt_retain ne '' && $sym !~ m/$main::opt_retain/) { next; } if ($main::opt_exclude ne '' && $sym =~ m/$main::opt_exclude/) { next; } push(@path, $a); } if (scalar(@path) > 0) { my $reduced_path = join("\n", @path); AddEntry($result, $reduced_path, $count); } } return $result; } sub RemoveUninterestingFrames { my $symbols = shift; my $profile = shift; # List of function names to skip my %skip = (); my $skip_regexp = 'NOMATCH'; if ($main::profile_type eq 'heap' || $main::profile_type eq 'growth') { foreach my $name ('@JEMALLOC_PREFIX@calloc', 'cfree', '@JEMALLOC_PREFIX@malloc', 'newImpl', 'void* newImpl', '@JEMALLOC_PREFIX@free', '@JEMALLOC_PREFIX@memalign', '@JEMALLOC_PREFIX@posix_memalign', '@JEMALLOC_PREFIX@aligned_alloc', 'pvalloc', '@JEMALLOC_PREFIX@valloc', '@JEMALLOC_PREFIX@realloc', '@JEMALLOC_PREFIX@mallocx', '@JEMALLOC_PREFIX@rallocx', '@JEMALLOC_PREFIX@xallocx', '@JEMALLOC_PREFIX@dallocx', '@JEMALLOC_PREFIX@sdallocx', 'tc_calloc', 'tc_cfree', 'tc_malloc', 'tc_free', 'tc_memalign', 'tc_posix_memalign', 'tc_pvalloc', 'tc_valloc', 'tc_realloc', 'tc_new', 'tc_delete', 'tc_newarray', 'tc_deletearray', 'tc_new_nothrow', 'tc_newarray_nothrow', 'do_malloc', '::do_malloc', # new name -- got moved to an unnamed ns '::do_malloc_or_cpp_alloc', 'DoSampledAllocation', 'simple_alloc::allocate', '__malloc_alloc_template::allocate', '__builtin_delete', '__builtin_new', '__builtin_vec_delete', '__builtin_vec_new', 'operator new', 'operator new[]', # The entry to our memory-allocation routines on OS X 'malloc_zone_malloc', 'malloc_zone_calloc', 'malloc_zone_valloc', 'malloc_zone_realloc', 'malloc_zone_memalign', 'malloc_zone_free', # These mark the beginning/end of our custom sections '__start_google_malloc', '__stop_google_malloc', '__start_malloc_hook', '__stop_malloc_hook') { $skip{$name} = 1; $skip{"_" . $name} = 1; # Mach (OS X) adds a _ prefix to everything } # TODO: Remove TCMalloc once everything has been # moved into the tcmalloc:: namespace and we have flushed # old code out of the system. $skip_regexp = "TCMalloc|^tcmalloc::"; } elsif ($main::profile_type eq 'contention') { foreach my $vname ('base::RecordLockProfileData', 'base::SubmitMutexProfileData', 'base::SubmitSpinLockProfileData', 'Mutex::Unlock', 'Mutex::UnlockSlow', 'Mutex::ReaderUnlock', 'MutexLock::~MutexLock', 'SpinLock::Unlock', 'SpinLock::SlowUnlock', 'SpinLockHolder::~SpinLockHolder') { $skip{$vname} = 1; } } elsif ($main::profile_type eq 'cpu') { # Drop signal handlers used for CPU profile collection # TODO(dpeng): this should not be necessary; it's taken # care of by the general 2nd-pc mechanism below. foreach my $name ('ProfileData::Add', # historical 'ProfileData::prof_handler', # historical 'CpuProfiler::prof_handler', '__FRAME_END__', '__pthread_sighandler', '__restore') { $skip{$name} = 1; } } else { # Nothing skipped for unknown types } if ($main::profile_type eq 'cpu') { # If all the second-youngest program counters are the same, # this STRONGLY suggests that it is an artifact of measurement, # i.e., stack frames pushed by the CPU profiler signal handler. # Hence, we delete them. # (The topmost PC is read from the signal structure, not from # the stack, so it does not get involved.) while (my $second_pc = IsSecondPcAlwaysTheSame($profile)) { my $result = {}; my $func = ''; if (exists($symbols->{$second_pc})) { $second_pc = $symbols->{$second_pc}->[0]; } print STDERR "Removing $second_pc from all stack traces.\n"; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); splice @addrs, 1, 1; my $reduced_path = join("\n", @addrs); AddEntry($result, $reduced_path, $count); } $profile = $result; } } my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); my @path = (); foreach my $a (@addrs) { if (exists($symbols->{$a})) { my $func = $symbols->{$a}->[0]; if ($skip{$func} || ($func =~ m/$skip_regexp/)) { # Throw away the portion of the backtrace seen so far, under the # assumption that previous frames were for functions internal to the # allocator. @path = (); next; } } push(@path, $a); } my $reduced_path = join("\n", @path); AddEntry($result, $reduced_path, $count); } $result = FilterFrames($symbols, $result); return $result; } # Reduce profile to granularity given by user sub ReduceProfile { my $symbols = shift; my $profile = shift; my $result = {}; my $fullname_to_shortname_map = {}; FillFullnameToShortnameMap($symbols, $fullname_to_shortname_map); foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @translated = TranslateStack($symbols, $fullname_to_shortname_map, $k); my @path = (); my %seen = (); $seen{''} = 1; # So that empty keys are skipped foreach my $e (@translated) { # To avoid double-counting due to recursion, skip a stack-trace # entry if it has already been seen if (!$seen{$e}) { $seen{$e} = 1; push(@path, $e); } } my $reduced_path = join("\n", @path); AddEntry($result, $reduced_path, $count); } return $result; } # Does the specified symbol array match the regexp? sub SymbolMatches { my $sym = shift; my $re = shift; if (defined($sym)) { for (my $i = 0; $i < $#{$sym}; $i += 3) { if ($sym->[$i] =~ m/$re/ || $sym->[$i+1] =~ m/$re/) { return 1; } } } return 0; } # Focus only on paths involving specified regexps sub FocusProfile { my $symbols = shift; my $profile = shift; my $focus = shift; my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); foreach my $a (@addrs) { # Reply if it matches either the address/shortname/fileline if (($a =~ m/$focus/) || SymbolMatches($symbols->{$a}, $focus)) { AddEntry($result, $k, $count); last; } } } return $result; } # Focus only on paths not involving specified regexps sub IgnoreProfile { my $symbols = shift; my $profile = shift; my $ignore = shift; my $result = {}; foreach my $k (keys(%{$profile})) { my $count = $profile->{$k}; my @addrs = split(/\n/, $k); my $matched = 0; foreach my $a (@addrs) { # Reply if it matches either the address/shortname/fileline if (($a =~ m/$ignore/) || SymbolMatches($symbols->{$a}, $ignore)) { $matched = 1; last; } } if (!$matched) { AddEntry($result, $k, $count); } } return $result; } # Get total count in profile sub TotalProfile { my $profile = shift; my $result = 0; foreach my $k (keys(%{$profile})) { $result += $profile->{$k}; } return $result; } # Add A to B sub AddProfile { my $A = shift; my $B = shift; my $R = {}; # add all keys in A foreach my $k (keys(%{$A})) { my $v = $A->{$k}; AddEntry($R, $k, $v); } # add all keys in B foreach my $k (keys(%{$B})) { my $v = $B->{$k}; AddEntry($R, $k, $v); } return $R; } # Merges symbol maps sub MergeSymbols { my $A = shift; my $B = shift; my $R = {}; foreach my $k (keys(%{$A})) { $R->{$k} = $A->{$k}; } if (defined($B)) { foreach my $k (keys(%{$B})) { $R->{$k} = $B->{$k}; } } return $R; } # Add A to B sub AddPcs { my $A = shift; my $B = shift; my $R = {}; # add all keys in A foreach my $k (keys(%{$A})) { $R->{$k} = 1 } # add all keys in B foreach my $k (keys(%{$B})) { $R->{$k} = 1 } return $R; } # Subtract B from A sub SubtractProfile { my $A = shift; my $B = shift; my $R = {}; foreach my $k (keys(%{$A})) { my $v = $A->{$k} - GetEntry($B, $k); if ($v < 0 && $main::opt_drop_negative) { $v = 0; } AddEntry($R, $k, $v); } if (!$main::opt_drop_negative) { # Take care of when subtracted profile has more entries foreach my $k (keys(%{$B})) { if (!exists($A->{$k})) { AddEntry($R, $k, 0 - $B->{$k}); } } } return $R; } # Get entry from profile; zero if not present sub GetEntry { my $profile = shift; my $k = shift; if (exists($profile->{$k})) { return $profile->{$k}; } else { return 0; } } # Add entry to specified profile sub AddEntry { my $profile = shift; my $k = shift; my $n = shift; if (!exists($profile->{$k})) { $profile->{$k} = 0; } $profile->{$k} += $n; } # Add a stack of entries to specified profile, and add them to the $pcs # list. sub AddEntries { my $profile = shift; my $pcs = shift; my $stack = shift; my $count = shift; my @k = (); foreach my $e (split(/\s+/, $stack)) { my $pc = HexExtend($e); $pcs->{$pc} = 1; push @k, $pc; } AddEntry($profile, (join "\n", @k), $count); } ##### Code to profile a server dynamically ##### sub CheckSymbolPage { my $url = SymbolPageURL(); my $command = ShellEscape(@URL_FETCHER, $url); open(SYMBOL, "$command |") or error($command); my $line = ; $line =~ s/\r//g; # turn windows-looking lines into unix-looking lines close(SYMBOL); unless (defined($line)) { error("$url doesn't exist\n"); } if ($line =~ /^num_symbols:\s+(\d+)$/) { if ($1 == 0) { error("Stripped binary. No symbols available.\n"); } } else { error("Failed to get the number of symbols from $url\n"); } } sub IsProfileURL { my $profile_name = shift; if (-f $profile_name) { printf STDERR "Using local file $profile_name.\n"; return 0; } return 1; } sub ParseProfileURL { my $profile_name = shift; if (!defined($profile_name) || $profile_name eq "") { return (); } # Split profile URL - matches all non-empty strings, so no test. $profile_name =~ m,^(https?://)?([^/]+)(.*?)(/|$PROFILES)?$,; my $proto = $1 || "http://"; my $hostport = $2; my $prefix = $3; my $profile = $4 || "/"; my $host = $hostport; $host =~ s/:.*//; my $baseurl = "$proto$hostport$prefix"; return ($host, $baseurl, $profile); } # We fetch symbols from the first profile argument. sub SymbolPageURL { my ($host, $baseURL, $path) = ParseProfileURL($main::pfile_args[0]); return "$baseURL$SYMBOL_PAGE"; } sub FetchProgramName() { my ($host, $baseURL, $path) = ParseProfileURL($main::pfile_args[0]); my $url = "$baseURL$PROGRAM_NAME_PAGE"; my $command_line = ShellEscape(@URL_FETCHER, $url); open(CMDLINE, "$command_line |") or error($command_line); my $cmdline = ; $cmdline =~ s/\r//g; # turn windows-looking lines into unix-looking lines close(CMDLINE); error("Failed to get program name from $url\n") unless defined($cmdline); $cmdline =~ s/\x00.+//; # Remove argv[1] and latters. $cmdline =~ s!\n!!g; # Remove LFs. return $cmdline; } # Gee, curl's -L (--location) option isn't reliable at least # with its 7.12.3 version. Curl will forget to post data if # there is a redirection. This function is a workaround for # curl. Redirection happens on borg hosts. sub ResolveRedirectionForCurl { my $url = shift; my $command_line = ShellEscape(@URL_FETCHER, "--head", $url); open(CMDLINE, "$command_line |") or error($command_line); while () { s/\r//g; # turn windows-looking lines into unix-looking lines if (/^Location: (.*)/) { $url = $1; } } close(CMDLINE); return $url; } # Add a timeout flat to URL_FETCHER. Returns a new list. sub AddFetchTimeout { my $timeout = shift; my @fetcher = @_; if (defined($timeout)) { if (join(" ", @fetcher) =~ m/\bcurl -s/) { push(@fetcher, "--max-time", sprintf("%d", $timeout)); } elsif (join(" ", @fetcher) =~ m/\brpcget\b/) { push(@fetcher, sprintf("--deadline=%d", $timeout)); } } return @fetcher; } # Reads a symbol map from the file handle name given as $1, returning # the resulting symbol map. Also processes variables relating to symbols. # Currently, the only variable processed is 'binary=' which updates # $main::prog to have the correct program name. sub ReadSymbols { my $in = shift; my $map = {}; while (<$in>) { s/\r//g; # turn windows-looking lines into unix-looking lines # Removes all the leading zeroes from the symbols, see comment below. if (m/^0x0*([0-9a-f]+)\s+(.+)/) { $map->{$1} = $2; } elsif (m/^---/) { last; } elsif (m/^([a-z][^=]*)=(.*)$/ ) { my ($variable, $value) = ($1, $2); for ($variable, $value) { s/^\s+//; s/\s+$//; } if ($variable eq "binary") { if ($main::prog ne $UNKNOWN_BINARY && $main::prog ne $value) { printf STDERR ("Warning: Mismatched binary name '%s', using '%s'.\n", $main::prog, $value); } $main::prog = $value; } else { printf STDERR ("Ignoring unknown variable in symbols list: " . "'%s' = '%s'\n", $variable, $value); } } } return $map; } sub URLEncode { my $str = shift; $str =~ s/([^A-Za-z0-9\-_.!~*'()])/ sprintf "%%%02x", ord $1 /eg; return $str; } sub AppendSymbolFilterParams { my $url = shift; my @params = (); if ($main::opt_retain ne '') { push(@params, sprintf("retain=%s", URLEncode($main::opt_retain))); } if ($main::opt_exclude ne '') { push(@params, sprintf("exclude=%s", URLEncode($main::opt_exclude))); } if (scalar @params > 0) { $url = sprintf("%s?%s", $url, join("&", @params)); } return $url; } # Fetches and processes symbols to prepare them for use in the profile output # code. If the optional 'symbol_map' arg is not given, fetches symbols from # $SYMBOL_PAGE for all PC values found in profile. Otherwise, the raw symbols # are assumed to have already been fetched into 'symbol_map' and are simply # extracted and processed. sub FetchSymbols { my $pcset = shift; my $symbol_map = shift; my %seen = (); my @pcs = grep { !$seen{$_}++ } keys(%$pcset); # uniq if (!defined($symbol_map)) { my $post_data = join("+", sort((map {"0x" . "$_"} @pcs))); open(POSTFILE, ">$main::tmpfile_sym"); print POSTFILE $post_data; close(POSTFILE); my $url = SymbolPageURL(); my $command_line; if (join(" ", @URL_FETCHER) =~ m/\bcurl -s/) { $url = ResolveRedirectionForCurl($url); $url = AppendSymbolFilterParams($url); $command_line = ShellEscape(@URL_FETCHER, "-d", "\@$main::tmpfile_sym", $url); } else { $url = AppendSymbolFilterParams($url); $command_line = (ShellEscape(@URL_FETCHER, "--post", $url) . " < " . ShellEscape($main::tmpfile_sym)); } # We use c++filt in case $SYMBOL_PAGE gives us mangled symbols. my $escaped_cppfilt = ShellEscape($obj_tool_map{"c++filt"}); open(SYMBOL, "$command_line | $escaped_cppfilt |") or error($command_line); $symbol_map = ReadSymbols(*SYMBOL{IO}); close(SYMBOL); } my $symbols = {}; foreach my $pc (@pcs) { my $fullname; # For 64 bits binaries, symbols are extracted with 8 leading zeroes. # Then /symbol reads the long symbols in as uint64, and outputs # the result with a "0x%08llx" format which get rid of the zeroes. # By removing all the leading zeroes in both $pc and the symbols from # /symbol, the symbols match and are retrievable from the map. my $shortpc = $pc; $shortpc =~ s/^0*//; # Each line may have a list of names, which includes the function # and also other functions it has inlined. They are separated (in # PrintSymbolizedProfile), by --, which is illegal in function names. my $fullnames; if (defined($symbol_map->{$shortpc})) { $fullnames = $symbol_map->{$shortpc}; } else { $fullnames = "0x" . $pc; # Just use addresses } my $sym = []; $symbols->{$pc} = $sym; foreach my $fullname (split("--", $fullnames)) { my $name = ShortFunctionName($fullname); push(@{$sym}, $name, "?", $fullname); } } return $symbols; } sub BaseName { my $file_name = shift; $file_name =~ s!^.*/!!; # Remove directory name return $file_name; } sub MakeProfileBaseName { my ($binary_name, $profile_name) = @_; my ($host, $baseURL, $path) = ParseProfileURL($profile_name); my $binary_shortname = BaseName($binary_name); return sprintf("%s.%s.%s", $binary_shortname, $main::op_time, $host); } sub FetchDynamicProfile { my $binary_name = shift; my $profile_name = shift; my $fetch_name_only = shift; my $encourage_patience = shift; if (!IsProfileURL($profile_name)) { return $profile_name; } else { my ($host, $baseURL, $path) = ParseProfileURL($profile_name); if ($path eq "" || $path eq "/") { # Missing type specifier defaults to cpu-profile $path = $PROFILE_PAGE; } my $profile_file = MakeProfileBaseName($binary_name, $profile_name); my $url = "$baseURL$path"; my $fetch_timeout = undef; if ($path =~ m/$PROFILE_PAGE|$PMUPROFILE_PAGE/) { if ($path =~ m/[?]/) { $url .= "&"; } else { $url .= "?"; } $url .= sprintf("seconds=%d", $main::opt_seconds); $fetch_timeout = $main::opt_seconds * 1.01 + 60; # Set $profile_type for consumption by PrintSymbolizedProfile. $main::profile_type = 'cpu'; } else { # For non-CPU profiles, we add a type-extension to # the target profile file name. my $suffix = $path; $suffix =~ s,/,.,g; $profile_file .= $suffix; # Set $profile_type for consumption by PrintSymbolizedProfile. if ($path =~ m/$HEAP_PAGE/) { $main::profile_type = 'heap'; } elsif ($path =~ m/$GROWTH_PAGE/) { $main::profile_type = 'growth'; } elsif ($path =~ m/$CONTENTION_PAGE/) { $main::profile_type = 'contention'; } } my $profile_dir = $ENV{"JEPROF_TMPDIR"} || ($ENV{HOME} . "/jeprof"); if (! -d $profile_dir) { mkdir($profile_dir) || die("Unable to create profile directory $profile_dir: $!\n"); } my $tmp_profile = "$profile_dir/.tmp.$profile_file"; my $real_profile = "$profile_dir/$profile_file"; if ($fetch_name_only > 0) { return $real_profile; } my @fetcher = AddFetchTimeout($fetch_timeout, @URL_FETCHER); my $cmd = ShellEscape(@fetcher, $url) . " > " . ShellEscape($tmp_profile); if ($path =~ m/$PROFILE_PAGE|$PMUPROFILE_PAGE|$CENSUSPROFILE_PAGE/){ print STDERR "Gathering CPU profile from $url for $main::opt_seconds seconds to\n ${real_profile}\n"; if ($encourage_patience) { print STDERR "Be patient...\n"; } } else { print STDERR "Fetching $path profile from $url to\n ${real_profile}\n"; } (system($cmd) == 0) || error("Failed to get profile: $cmd: $!\n"); (system("mv", $tmp_profile, $real_profile) == 0) || error("Unable to rename profile\n"); print STDERR "Wrote profile to $real_profile\n"; $main::collected_profile = $real_profile; return $main::collected_profile; } } # Collect profiles in parallel sub FetchDynamicProfiles { my $items = scalar(@main::pfile_args); my $levels = log($items) / log(2); if ($items == 1) { $main::profile_files[0] = FetchDynamicProfile($main::prog, $main::pfile_args[0], 0, 1); } else { # math rounding issues if ((2 ** $levels) < $items) { $levels++; } my $count = scalar(@main::pfile_args); for (my $i = 0; $i < $count; $i++) { $main::profile_files[$i] = FetchDynamicProfile($main::prog, $main::pfile_args[$i], 1, 0); } print STDERR "Fetching $count profiles, Be patient...\n"; FetchDynamicProfilesRecurse($levels, 0, 0); $main::collected_profile = join(" \\\n ", @main::profile_files); } } # Recursively fork a process to get enough processes # collecting profiles sub FetchDynamicProfilesRecurse { my $maxlevel = shift; my $level = shift; my $position = shift; if (my $pid = fork()) { $position = 0 | ($position << 1); TryCollectProfile($maxlevel, $level, $position); wait; } else { $position = 1 | ($position << 1); TryCollectProfile($maxlevel, $level, $position); cleanup(); exit(0); } } # Collect a single profile sub TryCollectProfile { my $maxlevel = shift; my $level = shift; my $position = shift; if ($level >= ($maxlevel - 1)) { if ($position < scalar(@main::pfile_args)) { FetchDynamicProfile($main::prog, $main::pfile_args[$position], 0, 0); } } else { FetchDynamicProfilesRecurse($maxlevel, $level+1, $position); } } ##### Parsing code ##### # Provide a small streaming-read module to handle very large # cpu-profile files. Stream in chunks along a sliding window. # Provides an interface to get one 'slot', correctly handling # endian-ness differences. A slot is one 32-bit or 64-bit word # (depending on the input profile). We tell endianness and bit-size # for the profile by looking at the first 8 bytes: in cpu profiles, # the second slot is always 3 (we'll accept anything that's not 0). BEGIN { package CpuProfileStream; sub new { my ($class, $file, $fname) = @_; my $self = { file => $file, base => 0, stride => 512 * 1024, # must be a multiple of bitsize/8 slots => [], unpack_code => "", # N for big-endian, V for little perl_is_64bit => 1, # matters if profile is 64-bit }; bless $self, $class; # Let unittests adjust the stride if ($main::opt_test_stride > 0) { $self->{stride} = $main::opt_test_stride; } # Read the first two slots to figure out bitsize and endianness. my $slots = $self->{slots}; my $str; read($self->{file}, $str, 8); # Set the global $address_length based on what we see here. # 8 is 32-bit (8 hexadecimal chars); 16 is 64-bit (16 hexadecimal chars). $address_length = ($str eq (chr(0)x8)) ? 16 : 8; if ($address_length == 8) { if (substr($str, 6, 2) eq chr(0)x2) { $self->{unpack_code} = 'V'; # Little-endian. } elsif (substr($str, 4, 2) eq chr(0)x2) { $self->{unpack_code} = 'N'; # Big-endian } else { ::error("$fname: header size >= 2**16\n"); } @$slots = unpack($self->{unpack_code} . "*", $str); } else { # If we're a 64-bit profile, check if we're a 64-bit-capable # perl. Otherwise, each slot will be represented as a float # instead of an int64, losing precision and making all the # 64-bit addresses wrong. We won't complain yet, but will # later if we ever see a value that doesn't fit in 32 bits. my $has_q = 0; eval { $has_q = pack("Q", "1") ? 1 : 1; }; if (!$has_q) { $self->{perl_is_64bit} = 0; } read($self->{file}, $str, 8); if (substr($str, 4, 4) eq chr(0)x4) { # We'd love to use 'Q', but it's a) not universal, b) not endian-proof. $self->{unpack_code} = 'V'; # Little-endian. } elsif (substr($str, 0, 4) eq chr(0)x4) { $self->{unpack_code} = 'N'; # Big-endian } else { ::error("$fname: header size >= 2**32\n"); } my @pair = unpack($self->{unpack_code} . "*", $str); # Since we know one of the pair is 0, it's fine to just add them. @$slots = (0, $pair[0] + $pair[1]); } return $self; } # Load more data when we access slots->get(X) which is not yet in memory. sub overflow { my ($self) = @_; my $slots = $self->{slots}; $self->{base} += $#$slots + 1; # skip over data we're replacing my $str; read($self->{file}, $str, $self->{stride}); if ($address_length == 8) { # the 32-bit case # This is the easy case: unpack provides 32-bit unpacking primitives. @$slots = unpack($self->{unpack_code} . "*", $str); } else { # We need to unpack 32 bits at a time and combine. my @b32_values = unpack($self->{unpack_code} . "*", $str); my @b64_values = (); for (my $i = 0; $i < $#b32_values; $i += 2) { # TODO(csilvers): if this is a 32-bit perl, the math below # could end up in a too-large int, which perl will promote # to a double, losing necessary precision. Deal with that. # Right now, we just die. my ($lo, $hi) = ($b32_values[$i], $b32_values[$i+1]); if ($self->{unpack_code} eq 'N') { # big-endian ($lo, $hi) = ($hi, $lo); } my $value = $lo + $hi * (2**32); if (!$self->{perl_is_64bit} && # check value is exactly represented (($value % (2**32)) != $lo || int($value / (2**32)) != $hi)) { ::error("Need a 64-bit perl to process this 64-bit profile.\n"); } push(@b64_values, $value); } @$slots = @b64_values; } } # Access the i-th long in the file (logically), or -1 at EOF. sub get { my ($self, $idx) = @_; my $slots = $self->{slots}; while ($#$slots >= 0) { if ($idx < $self->{base}) { # The only time we expect a reference to $slots[$i - something] # after referencing $slots[$i] is reading the very first header. # Since $stride > |header|, that shouldn't cause any lookback # errors. And everything after the header is sequential. print STDERR "Unexpected look-back reading CPU profile"; return -1; # shrug, don't know what better to return } elsif ($idx > $self->{base} + $#$slots) { $self->overflow(); } else { return $slots->[$idx - $self->{base}]; } } # If we get here, $slots is [], which means we've reached EOF return -1; # unique since slots is supposed to hold unsigned numbers } } # Reads the top, 'header' section of a profile, and returns the last # line of the header, commonly called a 'header line'. The header # section of a profile consists of zero or more 'command' lines that # are instructions to jeprof, which jeprof executes when reading the # header. All 'command' lines start with a %. After the command # lines is the 'header line', which is a profile-specific line that # indicates what type of profile it is, and perhaps other global # information about the profile. For instance, here's a header line # for a heap profile: # heap profile: 53: 38236 [ 5525: 1284029] @ heapprofile # For historical reasons, the CPU profile does not contain a text- # readable header line. If the profile looks like a CPU profile, # this function returns "". If no header line could be found, this # function returns undef. # # The following commands are recognized: # %warn -- emit the rest of this line to stderr, prefixed by 'WARNING:' # # The input file should be in binmode. sub ReadProfileHeader { local *PROFILE = shift; my $firstchar = ""; my $line = ""; read(PROFILE, $firstchar, 1); seek(PROFILE, -1, 1); # unread the firstchar if ($firstchar !~ /[[:print:]]/) { # is not a text character return ""; } while (defined($line = )) { $line =~ s/\r//g; # turn windows-looking lines into unix-looking lines if ($line =~ /^%warn\s+(.*)/) { # 'warn' command # Note this matches both '%warn blah\n' and '%warn\n'. print STDERR "WARNING: $1\n"; # print the rest of the line } elsif ($line =~ /^%/) { print STDERR "Ignoring unknown command from profile header: $line"; } else { # End of commands, must be the header line. return $line; } } return undef; # got to EOF without seeing a header line } sub IsSymbolizedProfileFile { my $file_name = shift; if (!(-e $file_name) || !(-r $file_name)) { return 0; } # Check if the file contains a symbol-section marker. open(TFILE, "<$file_name"); binmode TFILE; my $firstline = ReadProfileHeader(*TFILE); close(TFILE); if (!$firstline) { return 0; } $SYMBOL_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $symbol_marker = $&; return $firstline =~ /^--- *$symbol_marker/; } # Parse profile generated by common/profiler.cc and return a reference # to a map: # $result->{version} Version number of profile file # $result->{period} Sampling period (in microseconds) # $result->{profile} Profile object # $result->{threads} Map of thread IDs to profile objects # $result->{map} Memory map info from profile # $result->{pcs} Hash of all PC values seen, key is hex address sub ReadProfile { my $prog = shift; my $fname = shift; my $result; # return value $CONTENTION_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $contention_marker = $&; $GROWTH_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $growth_marker = $&; $SYMBOL_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $symbol_marker = $&; $PROFILE_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $profile_marker = $&; $HEAP_PAGE =~ m,[^/]+$,; # matches everything after the last slash my $heap_marker = $&; # Look at first line to see if it is a heap or a CPU profile. # CPU profile may start with no header at all, and just binary data # (starting with \0\0\0\0) -- in that case, don't try to read the # whole firstline, since it may be gigabytes(!) of data. open(PROFILE, "<$fname") || error("$fname: $!\n"); binmode PROFILE; # New perls do UTF-8 processing my $header = ReadProfileHeader(*PROFILE); if (!defined($header)) { # means "at EOF" error("Profile is empty.\n"); } my $symbols; if ($header =~ m/^--- *$symbol_marker/o) { # Verify that the user asked for a symbolized profile if (!$main::use_symbolized_profile) { # we have both a binary and symbolized profiles, abort error("FATAL ERROR: Symbolized profile\n $fname\ncannot be used with " . "a binary arg. Try again without passing\n $prog\n"); } # Read the symbol section of the symbolized profile file. $symbols = ReadSymbols(*PROFILE{IO}); # Read the next line to get the header for the remaining profile. $header = ReadProfileHeader(*PROFILE) || ""; } if ($header =~ m/^--- *($heap_marker|$growth_marker)/o) { # Skip "--- ..." line for profile types that have their own headers. $header = ReadProfileHeader(*PROFILE) || ""; } $main::profile_type = ''; if ($header =~ m/^heap profile:.*$growth_marker/o) { $main::profile_type = 'growth'; $result = ReadHeapProfile($prog, *PROFILE, $header); } elsif ($header =~ m/^heap profile:/) { $main::profile_type = 'heap'; $result = ReadHeapProfile($prog, *PROFILE, $header); } elsif ($header =~ m/^heap/) { $main::profile_type = 'heap'; $result = ReadThreadedHeapProfile($prog, $fname, $header); } elsif ($header =~ m/^--- *$contention_marker/o) { $main::profile_type = 'contention'; $result = ReadSynchProfile($prog, *PROFILE); } elsif ($header =~ m/^--- *Stacks:/) { print STDERR "Old format contention profile: mistakenly reports " . "condition variable signals as lock contentions.\n"; $main::profile_type = 'contention'; $result = ReadSynchProfile($prog, *PROFILE); } elsif ($header =~ m/^--- *$profile_marker/) { # the binary cpu profile data starts immediately after this line $main::profile_type = 'cpu'; $result = ReadCPUProfile($prog, $fname, *PROFILE); } else { if (defined($symbols)) { # a symbolized profile contains a format we don't recognize, bail out error("$fname: Cannot recognize profile section after symbols.\n"); } # no ascii header present -- must be a CPU profile $main::profile_type = 'cpu'; $result = ReadCPUProfile($prog, $fname, *PROFILE); } close(PROFILE); # if we got symbols along with the profile, return those as well if (defined($symbols)) { $result->{symbols} = $symbols; } return $result; } # Subtract one from caller pc so we map back to call instr. # However, don't do this if we're reading a symbolized profile # file, in which case the subtract-one was done when the file # was written. # # We apply the same logic to all readers, though ReadCPUProfile uses an # independent implementation. sub FixCallerAddresses { my $stack = shift; # --raw/http: Always subtract one from pc's, because PrintSymbolizedProfile() # dumps unadjusted profiles. { $stack =~ /(\s)/; my $delimiter = $1; my @addrs = split(' ', $stack); my @fixedaddrs; $#fixedaddrs = $#addrs; if ($#addrs >= 0) { $fixedaddrs[0] = $addrs[0]; } for (my $i = 1; $i <= $#addrs; $i++) { $fixedaddrs[$i] = AddressSub($addrs[$i], "0x1"); } return join $delimiter, @fixedaddrs; } } # CPU profile reader sub ReadCPUProfile { my $prog = shift; my $fname = shift; # just used for logging local *PROFILE = shift; my $version; my $period; my $i; my $profile = {}; my $pcs = {}; # Parse string into array of slots. my $slots = CpuProfileStream->new(*PROFILE, $fname); # Read header. The current header version is a 5-element structure # containing: # 0: header count (always 0) # 1: header "words" (after this one: 3) # 2: format version (0) # 3: sampling period (usec) # 4: unused padding (always 0) if ($slots->get(0) != 0 ) { error("$fname: not a profile file, or old format profile file\n"); } $i = 2 + $slots->get(1); $version = $slots->get(2); $period = $slots->get(3); # Do some sanity checking on these header values. if ($version > (2**32) || $period > (2**32) || $i > (2**32) || $i < 5) { error("$fname: not a profile file, or corrupted profile file\n"); } # Parse profile while ($slots->get($i) != -1) { my $n = $slots->get($i++); my $d = $slots->get($i++); if ($d > (2**16)) { # TODO(csilvers): what's a reasonable max-stack-depth? my $addr = sprintf("0%o", $i * ($address_length == 8 ? 4 : 8)); print STDERR "At index $i (address $addr):\n"; error("$fname: stack trace depth >= 2**32\n"); } if ($slots->get($i) == 0) { # End of profile data marker $i += $d; last; } # Make key out of the stack entries my @k = (); for (my $j = 0; $j < $d; $j++) { my $pc = $slots->get($i+$j); # Subtract one from caller pc so we map back to call instr. $pc--; $pc = sprintf("%0*x", $address_length, $pc); $pcs->{$pc} = 1; push @k, $pc; } AddEntry($profile, (join "\n", @k), $n); $i += $d; } # Parse map my $map = ''; seek(PROFILE, $i * 4, 0); read(PROFILE, $map, (stat PROFILE)[7]); my $r = {}; $r->{version} = $version; $r->{period} = $period; $r->{profile} = $profile; $r->{libs} = ParseLibraries($prog, $map, $pcs); $r->{pcs} = $pcs; return $r; } sub HeapProfileIndex { my $index = 1; if ($main::opt_inuse_space) { $index = 1; } elsif ($main::opt_inuse_objects) { $index = 0; } elsif ($main::opt_alloc_space) { $index = 3; } elsif ($main::opt_alloc_objects) { $index = 2; } return $index; } sub ReadMappedLibraries { my $fh = shift; my $map = ""; # Read the /proc/self/maps data while (<$fh>) { s/\r//g; # turn windows-looking lines into unix-looking lines $map .= $_; } return $map; } sub ReadMemoryMap { my $fh = shift; my $map = ""; # Read /proc/self/maps data as formatted by DumpAddressMap() my $buildvar = ""; while () { s/\r//g; # turn windows-looking lines into unix-looking lines # Parse "build=" specification if supplied if (m/^\s*build=(.*)\n/) { $buildvar = $1; } # Expand "$build" variable if available $_ =~ s/\$build\b/$buildvar/g; $map .= $_; } return $map; } sub AdjustSamples { my ($sample_adjustment, $sampling_algorithm, $n1, $s1, $n2, $s2) = @_; if ($sample_adjustment) { if ($sampling_algorithm == 2) { # Remote-heap version 2 # The sampling frequency is the rate of a Poisson process. # This means that the probability of sampling an allocation of # size X with sampling rate Y is 1 - exp(-X/Y) if ($n1 != 0) { my $ratio = (($s1*1.0)/$n1)/($sample_adjustment); my $scale_factor = 1/(1 - exp(-$ratio)); $n1 *= $scale_factor; $s1 *= $scale_factor; } if ($n2 != 0) { my $ratio = (($s2*1.0)/$n2)/($sample_adjustment); my $scale_factor = 1/(1 - exp(-$ratio)); $n2 *= $scale_factor; $s2 *= $scale_factor; } } else { # Remote-heap version 1 my $ratio; $ratio = (($s1*1.0)/$n1)/($sample_adjustment); if ($ratio < 1) { $n1 /= $ratio; $s1 /= $ratio; } $ratio = (($s2*1.0)/$n2)/($sample_adjustment); if ($ratio < 1) { $n2 /= $ratio; $s2 /= $ratio; } } } return ($n1, $s1, $n2, $s2); } sub ReadHeapProfile { my $prog = shift; local *PROFILE = shift; my $header = shift; my $index = HeapProfileIndex(); # Find the type of this profile. The header line looks like: # heap profile: 1246: 8800744 [ 1246: 8800744] @ /266053 # There are two pairs , the first inuse objects/space, and the # second allocated objects/space. This is followed optionally by a profile # type, and if that is present, optionally by a sampling frequency. # For remote heap profiles (v1): # The interpretation of the sampling frequency is that the profiler, for # each sample, calculates a uniformly distributed random integer less than # the given value, and records the next sample after that many bytes have # been allocated. Therefore, the expected sample interval is half of the # given frequency. By default, if not specified, the expected sample # interval is 128KB. Only remote-heap-page profiles are adjusted for # sample size. # For remote heap profiles (v2): # The sampling frequency is the rate of a Poisson process. This means that # the probability of sampling an allocation of size X with sampling rate Y # is 1 - exp(-X/Y) # For version 2, a typical header line might look like this: # heap profile: 1922: 127792360 [ 1922: 127792360] @ _v2/524288 # the trailing number (524288) is the sampling rate. (Version 1 showed # double the 'rate' here) my $sampling_algorithm = 0; my $sample_adjustment = 0; chomp($header); my $type = "unknown"; if ($header =~ m"^heap profile:\s*(\d+):\s+(\d+)\s+\[\s*(\d+):\s+(\d+)\](\s*@\s*([^/]*)(/(\d+))?)?") { if (defined($6) && ($6 ne '')) { $type = $6; my $sample_period = $8; # $type is "heapprofile" for profiles generated by the # heap-profiler, and either "heap" or "heap_v2" for profiles # generated by sampling directly within tcmalloc. It can also # be "growth" for heap-growth profiles. The first is typically # found for profiles generated locally, and the others for # remote profiles. if (($type eq "heapprofile") || ($type !~ /heap/) ) { # No need to adjust for the sampling rate with heap-profiler-derived data $sampling_algorithm = 0; } elsif ($type =~ /_v2/) { $sampling_algorithm = 2; # version 2 sampling if (defined($sample_period) && ($sample_period ne '')) { $sample_adjustment = int($sample_period); } } else { $sampling_algorithm = 1; # version 1 sampling if (defined($sample_period) && ($sample_period ne '')) { $sample_adjustment = int($sample_period)/2; } } } else { # We detect whether or not this is a remote-heap profile by checking # that the total-allocated stats ($n2,$s2) are exactly the # same as the in-use stats ($n1,$s1). It is remotely conceivable # that a non-remote-heap profile may pass this check, but it is hard # to imagine how that could happen. # In this case it's so old it's guaranteed to be remote-heap version 1. my ($n1, $s1, $n2, $s2) = ($1, $2, $3, $4); if (($n1 == $n2) && ($s1 == $s2)) { # This is likely to be a remote-heap based sample profile $sampling_algorithm = 1; } } } if ($sampling_algorithm > 0) { # For remote-heap generated profiles, adjust the counts and sizes to # account for the sample rate (we sample once every 128KB by default). if ($sample_adjustment == 0) { # Turn on profile adjustment. $sample_adjustment = 128*1024; print STDERR "Adjusting heap profiles for 1-in-128KB sampling rate\n"; } else { printf STDERR ("Adjusting heap profiles for 1-in-%d sampling rate\n", $sample_adjustment); } if ($sampling_algorithm > 1) { # We don't bother printing anything for the original version (version 1) printf STDERR "Heap version $sampling_algorithm\n"; } } my $profile = {}; my $pcs = {}; my $map = ""; while () { s/\r//g; # turn windows-looking lines into unix-looking lines if (/^MAPPED_LIBRARIES:/) { $map .= ReadMappedLibraries(*PROFILE); last; } if (/^--- Memory map:/) { $map .= ReadMemoryMap(*PROFILE); last; } # Read entry of the form: # : [: ] @ a1 a2 a3 ... an s/^\s*//; s/\s*$//; if (m/^\s*(\d+):\s+(\d+)\s+\[\s*(\d+):\s+(\d+)\]\s+@\s+(.*)$/) { my $stack = $5; my ($n1, $s1, $n2, $s2) = ($1, $2, $3, $4); my @counts = AdjustSamples($sample_adjustment, $sampling_algorithm, $n1, $s1, $n2, $s2); AddEntries($profile, $pcs, FixCallerAddresses($stack), $counts[$index]); } } my $r = {}; $r->{version} = "heap"; $r->{period} = 1; $r->{profile} = $profile; $r->{libs} = ParseLibraries($prog, $map, $pcs); $r->{pcs} = $pcs; return $r; } sub ReadThreadedHeapProfile { my ($prog, $fname, $header) = @_; my $index = HeapProfileIndex(); my $sampling_algorithm = 0; my $sample_adjustment = 0; chomp($header); my $type = "unknown"; # Assuming a very specific type of header for now. if ($header =~ m"^heap_v2/(\d+)") { $type = "_v2"; $sampling_algorithm = 2; $sample_adjustment = int($1); } if ($type ne "_v2" || !defined($sample_adjustment)) { die "Threaded heap profiles require v2 sampling with a sample rate\n"; } my $profile = {}; my $thread_profiles = {}; my $pcs = {}; my $map = ""; my $stack = ""; while () { s/\r//g; if (/^MAPPED_LIBRARIES:/) { $map .= ReadMappedLibraries(*PROFILE); last; } if (/^--- Memory map:/) { $map .= ReadMemoryMap(*PROFILE); last; } # Read entry of the form: # @ a1 a2 ... an # t*: : [: ] # t1: : [: ] # ... # tn: : [: ] s/^\s*//; s/\s*$//; if (m/^@\s+(.*)$/) { $stack = $1; } elsif (m/^\s*(t(\*|\d+)):\s+(\d+):\s+(\d+)\s+\[\s*(\d+):\s+(\d+)\]$/) { if ($stack eq "") { # Still in the header, so this is just a per-thread summary. next; } my $thread = $2; my ($n1, $s1, $n2, $s2) = ($3, $4, $5, $6); my @counts = AdjustSamples($sample_adjustment, $sampling_algorithm, $n1, $s1, $n2, $s2); if ($thread eq "*") { AddEntries($profile, $pcs, FixCallerAddresses($stack), $counts[$index]); } else { if (!exists($thread_profiles->{$thread})) { $thread_profiles->{$thread} = {}; } AddEntries($thread_profiles->{$thread}, $pcs, FixCallerAddresses($stack), $counts[$index]); } } } my $r = {}; $r->{version} = "heap"; $r->{period} = 1; $r->{profile} = $profile; $r->{threads} = $thread_profiles; $r->{libs} = ParseLibraries($prog, $map, $pcs); $r->{pcs} = $pcs; return $r; } sub ReadSynchProfile { my $prog = shift; local *PROFILE = shift; my $header = shift; my $map = ''; my $profile = {}; my $pcs = {}; my $sampling_period = 1; my $cyclespernanosec = 2.8; # Default assumption for old binaries my $seen_clockrate = 0; my $line; my $index = 0; if ($main::opt_total_delay) { $index = 0; } elsif ($main::opt_contentions) { $index = 1; } elsif ($main::opt_mean_delay) { $index = 2; } while ( $line = ) { $line =~ s/\r//g; # turn windows-looking lines into unix-looking lines if ( $line =~ /^\s*(\d+)\s+(\d+) \@\s*(.*?)\s*$/ ) { my ($cycles, $count, $stack) = ($1, $2, $3); # Convert cycles to nanoseconds $cycles /= $cyclespernanosec; # Adjust for sampling done by application $cycles *= $sampling_period; $count *= $sampling_period; my @values = ($cycles, $count, $cycles / $count); AddEntries($profile, $pcs, FixCallerAddresses($stack), $values[$index]); } elsif ( $line =~ /^(slow release).*thread \d+ \@\s*(.*?)\s*$/ || $line =~ /^\s*(\d+) \@\s*(.*?)\s*$/ ) { my ($cycles, $stack) = ($1, $2); if ($cycles !~ /^\d+$/) { next; } # Convert cycles to nanoseconds $cycles /= $cyclespernanosec; # Adjust for sampling done by application $cycles *= $sampling_period; AddEntries($profile, $pcs, FixCallerAddresses($stack), $cycles); } elsif ( $line =~ m/^([a-z][^=]*)=(.*)$/ ) { my ($variable, $value) = ($1,$2); for ($variable, $value) { s/^\s+//; s/\s+$//; } if ($variable eq "cycles/second") { $cyclespernanosec = $value / 1e9; $seen_clockrate = 1; } elsif ($variable eq "sampling period") { $sampling_period = $value; } elsif ($variable eq "ms since reset") { # Currently nothing is done with this value in jeprof # So we just silently ignore it for now } elsif ($variable eq "discarded samples") { # Currently nothing is done with this value in jeprof # So we just silently ignore it for now } else { printf STDERR ("Ignoring unnknown variable in /contention output: " . "'%s' = '%s'\n",$variable,$value); } } else { # Memory map entry $map .= $line; } } if (!$seen_clockrate) { printf STDERR ("No cycles/second entry in profile; Guessing %.1f GHz\n", $cyclespernanosec); } my $r = {}; $r->{version} = 0; $r->{period} = $sampling_period; $r->{profile} = $profile; $r->{libs} = ParseLibraries($prog, $map, $pcs); $r->{pcs} = $pcs; return $r; } # Given a hex value in the form "0x1abcd" or "1abcd", return either # "0001abcd" or "000000000001abcd", depending on the current (global) # address length. sub HexExtend { my $addr = shift; $addr =~ s/^(0x)?0*//; my $zeros_needed = $address_length - length($addr); if ($zeros_needed < 0) { printf STDERR "Warning: address $addr is longer than address length $address_length\n"; return $addr; } return ("0" x $zeros_needed) . $addr; } ##### Symbol extraction ##### # Aggressively search the lib_prefix values for the given library # If all else fails, just return the name of the library unmodified. # If the lib_prefix is "/my/path,/other/path" and $file is "/lib/dir/mylib.so" # it will search the following locations in this order, until it finds a file: # /my/path/lib/dir/mylib.so # /other/path/lib/dir/mylib.so # /my/path/dir/mylib.so # /other/path/dir/mylib.so # /my/path/mylib.so # /other/path/mylib.so # /lib/dir/mylib.so (returned as last resort) sub FindLibrary { my $file = shift; my $suffix = $file; # Search for the library as described above do { foreach my $prefix (@prefix_list) { my $fullpath = $prefix . $suffix; if (-e $fullpath) { return $fullpath; } } } while ($suffix =~ s|^/[^/]+/|/|); return $file; } # Return path to library with debugging symbols. # For libc libraries, the copy in /usr/lib/debug contains debugging symbols sub DebuggingLibrary { my $file = shift; if ($file =~ m|^/|) { if (-f "/usr/lib/debug$file") { return "/usr/lib/debug$file"; } elsif (-f "/usr/lib/debug$file.debug") { return "/usr/lib/debug$file.debug"; } } return undef; } # Parse text section header of a library using objdump sub ParseTextSectionHeaderFromObjdump { my $lib = shift; my $size = undef; my $vma; my $file_offset; # Get objdump output from the library file to figure out how to # map between mapped addresses and addresses in the library. my $cmd = ShellEscape($obj_tool_map{"objdump"}, "-h", $lib); open(OBJDUMP, "$cmd |") || error("$cmd: $!\n"); while () { s/\r//g; # turn windows-looking lines into unix-looking lines # Idx Name Size VMA LMA File off Algn # 10 .text 00104b2c 420156f0 420156f0 000156f0 2**4 # For 64-bit objects, VMA and LMA will be 16 hex digits, size and file # offset may still be 8. But AddressSub below will still handle that. my @x = split; if (($#x >= 6) && ($x[1] eq '.text')) { $size = $x[2]; $vma = $x[3]; $file_offset = $x[5]; last; } } close(OBJDUMP); if (!defined($size)) { return undef; } my $r = {}; $r->{size} = $size; $r->{vma} = $vma; $r->{file_offset} = $file_offset; return $r; } # Parse text section header of a library using otool (on OS X) sub ParseTextSectionHeaderFromOtool { my $lib = shift; my $size = undef; my $vma = undef; my $file_offset = undef; # Get otool output from the library file to figure out how to # map between mapped addresses and addresses in the library. my $command = ShellEscape($obj_tool_map{"otool"}, "-l", $lib); open(OTOOL, "$command |") || error("$command: $!\n"); my $cmd = ""; my $sectname = ""; my $segname = ""; foreach my $line () { $line =~ s/\r//g; # turn windows-looking lines into unix-looking lines # Load command <#> # cmd LC_SEGMENT # [...] # Section # sectname __text # segname __TEXT # addr 0x000009f8 # size 0x00018b9e # offset 2552 # align 2^2 (4) # We will need to strip off the leading 0x from the hex addresses, # and convert the offset into hex. if ($line =~ /Load command/) { $cmd = ""; $sectname = ""; $segname = ""; } elsif ($line =~ /Section/) { $sectname = ""; $segname = ""; } elsif ($line =~ /cmd (\w+)/) { $cmd = $1; } elsif ($line =~ /sectname (\w+)/) { $sectname = $1; } elsif ($line =~ /segname (\w+)/) { $segname = $1; } elsif (!(($cmd eq "LC_SEGMENT" || $cmd eq "LC_SEGMENT_64") && $sectname eq "__text" && $segname eq "__TEXT")) { next; } elsif ($line =~ /\baddr 0x([0-9a-fA-F]+)/) { $vma = $1; } elsif ($line =~ /\bsize 0x([0-9a-fA-F]+)/) { $size = $1; } elsif ($line =~ /\boffset ([0-9]+)/) { $file_offset = sprintf("%016x", $1); } if (defined($vma) && defined($size) && defined($file_offset)) { last; } } close(OTOOL); if (!defined($vma) || !defined($size) || !defined($file_offset)) { return undef; } my $r = {}; $r->{size} = $size; $r->{vma} = $vma; $r->{file_offset} = $file_offset; return $r; } sub ParseTextSectionHeader { # obj_tool_map("otool") is only defined if we're in a Mach-O environment if (defined($obj_tool_map{"otool"})) { my $r = ParseTextSectionHeaderFromOtool(@_); if (defined($r)){ return $r; } } # If otool doesn't work, or we don't have it, fall back to objdump return ParseTextSectionHeaderFromObjdump(@_); } # Split /proc/pid/maps dump into a list of libraries sub ParseLibraries { return if $main::use_symbol_page; # We don't need libraries info. my $prog = Cwd::abs_path(shift); my $map = shift; my $pcs = shift; my $result = []; my $h = "[a-f0-9]+"; my $zero_offset = HexExtend("0"); my $buildvar = ""; foreach my $l (split("\n", $map)) { if ($l =~ m/^\s*build=(.*)$/) { $buildvar = $1; } my $start; my $finish; my $offset; my $lib; if ($l =~ /^($h)-($h)\s+..x.\s+($h)\s+\S+:\S+\s+\d+\s+(\S+\.(so|dll|dylib|bundle)((\.\d+)+\w*(\.\d+){0,3})?)$/i) { # Full line from /proc/self/maps. Example: # 40000000-40015000 r-xp 00000000 03:01 12845071 /lib/ld-2.3.2.so $start = HexExtend($1); $finish = HexExtend($2); $offset = HexExtend($3); $lib = $4; $lib =~ s|\\|/|g; # turn windows-style paths into unix-style paths } elsif ($l =~ /^\s*($h)-($h):\s*(\S+\.so(\.\d+)*)/) { # Cooked line from DumpAddressMap. Example: # 40000000-40015000: /lib/ld-2.3.2.so $start = HexExtend($1); $finish = HexExtend($2); $offset = $zero_offset; $lib = $3; } elsif (($l =~ /^($h)-($h)\s+..x.\s+($h)\s+\S+:\S+\s+\d+\s+(\S+)$/i) && ($4 eq $prog)) { # PIEs and address space randomization do not play well with our # default assumption that main executable is at lowest # addresses. So we're detecting main executable in # /proc/self/maps as well. $start = HexExtend($1); $finish = HexExtend($2); $offset = HexExtend($3); $lib = $4; $lib =~ s|\\|/|g; # turn windows-style paths into unix-style paths } # FreeBSD 10.0 virtual memory map /proc/curproc/map as defined in # function procfs_doprocmap (sys/fs/procfs/procfs_map.c) # # Example: # 0x800600000 0x80061a000 26 0 0xfffff800035a0000 r-x 75 33 0x1004 COW NC vnode /libexec/ld-elf.s # o.1 NCH -1 elsif ($l =~ /^(0x$h)\s(0x$h)\s\d+\s\d+\s0x$h\sr-x\s\d+\s\d+\s0x\d+\s(COW|NCO)\s(NC|NNC)\svnode\s(\S+\.so(\.\d+)*)/) { $start = HexExtend($1); $finish = HexExtend($2); $offset = $zero_offset; $lib = FindLibrary($5); } else { next; } # Expand "$build" variable if available $lib =~ s/\$build\b/$buildvar/g; $lib = FindLibrary($lib); # Check for pre-relocated libraries, which use pre-relocated symbol tables # and thus require adjusting the offset that we'll use to translate # VM addresses into symbol table addresses. # Only do this if we're not going to fetch the symbol table from a # debugging copy of the library. if (!DebuggingLibrary($lib)) { my $text = ParseTextSectionHeader($lib); if (defined($text)) { my $vma_offset = AddressSub($text->{vma}, $text->{file_offset}); $offset = AddressAdd($offset, $vma_offset); } } if($main::opt_debug) { printf STDERR "$start:$finish ($offset) $lib\n"; } push(@{$result}, [$lib, $start, $finish, $offset]); } # Append special entry for additional library (not relocated) if ($main::opt_lib ne "") { my $text = ParseTextSectionHeader($main::opt_lib); if (defined($text)) { my $start = $text->{vma}; my $finish = AddressAdd($start, $text->{size}); push(@{$result}, [$main::opt_lib, $start, $finish, $start]); } } # Append special entry for the main program. This covers # 0..max_pc_value_seen, so that we assume pc values not found in one # of the library ranges will be treated as coming from the main # program binary. my $min_pc = HexExtend("0"); my $max_pc = $min_pc; # find the maximal PC value in any sample foreach my $pc (keys(%{$pcs})) { if (HexExtend($pc) gt $max_pc) { $max_pc = HexExtend($pc); } } push(@{$result}, [$prog, $min_pc, $max_pc, $zero_offset]); return $result; } # Add two hex addresses of length $address_length. # Run jeprof --test for unit test if this is changed. sub AddressAdd { my $addr1 = shift; my $addr2 = shift; my $sum; if ($address_length == 8) { # Perl doesn't cope with wraparound arithmetic, so do it explicitly: $sum = (hex($addr1)+hex($addr2)) % (0x10000000 * 16); return sprintf("%08x", $sum); } else { # Do the addition in 7-nibble chunks to trivialize carry handling. if ($main::opt_debug and $main::opt_test) { print STDERR "AddressAdd $addr1 + $addr2 = "; } my $a1 = substr($addr1,-7); $addr1 = substr($addr1,0,-7); my $a2 = substr($addr2,-7); $addr2 = substr($addr2,0,-7); $sum = hex($a1) + hex($a2); my $c = 0; if ($sum > 0xfffffff) { $c = 1; $sum -= 0x10000000; } my $r = sprintf("%07x", $sum); $a1 = substr($addr1,-7); $addr1 = substr($addr1,0,-7); $a2 = substr($addr2,-7); $addr2 = substr($addr2,0,-7); $sum = hex($a1) + hex($a2) + $c; $c = 0; if ($sum > 0xfffffff) { $c = 1; $sum -= 0x10000000; } $r = sprintf("%07x", $sum) . $r; $sum = hex($addr1) + hex($addr2) + $c; if ($sum > 0xff) { $sum -= 0x100; } $r = sprintf("%02x", $sum) . $r; if ($main::opt_debug and $main::opt_test) { print STDERR "$r\n"; } return $r; } } # Subtract two hex addresses of length $address_length. # Run jeprof --test for unit test if this is changed. sub AddressSub { my $addr1 = shift; my $addr2 = shift; my $diff; if ($address_length == 8) { # Perl doesn't cope with wraparound arithmetic, so do it explicitly: $diff = (hex($addr1)-hex($addr2)) % (0x10000000 * 16); return sprintf("%08x", $diff); } else { # Do the addition in 7-nibble chunks to trivialize borrow handling. # if ($main::opt_debug) { print STDERR "AddressSub $addr1 - $addr2 = "; } my $a1 = hex(substr($addr1,-7)); $addr1 = substr($addr1,0,-7); my $a2 = hex(substr($addr2,-7)); $addr2 = substr($addr2,0,-7); my $b = 0; if ($a2 > $a1) { $b = 1; $a1 += 0x10000000; } $diff = $a1 - $a2; my $r = sprintf("%07x", $diff); $a1 = hex(substr($addr1,-7)); $addr1 = substr($addr1,0,-7); $a2 = hex(substr($addr2,-7)) + $b; $addr2 = substr($addr2,0,-7); $b = 0; if ($a2 > $a1) { $b = 1; $a1 += 0x10000000; } $diff = $a1 - $a2; $r = sprintf("%07x", $diff) . $r; $a1 = hex($addr1); $a2 = hex($addr2) + $b; if ($a2 > $a1) { $a1 += 0x100; } $diff = $a1 - $a2; $r = sprintf("%02x", $diff) . $r; # if ($main::opt_debug) { print STDERR "$r\n"; } return $r; } } # Increment a hex addresses of length $address_length. # Run jeprof --test for unit test if this is changed. sub AddressInc { my $addr = shift; my $sum; if ($address_length == 8) { # Perl doesn't cope with wraparound arithmetic, so do it explicitly: $sum = (hex($addr)+1) % (0x10000000 * 16); return sprintf("%08x", $sum); } else { # Do the addition in 7-nibble chunks to trivialize carry handling. # We are always doing this to step through the addresses in a function, # and will almost never overflow the first chunk, so we check for this # case and exit early. # if ($main::opt_debug) { print STDERR "AddressInc $addr1 = "; } my $a1 = substr($addr,-7); $addr = substr($addr,0,-7); $sum = hex($a1) + 1; my $r = sprintf("%07x", $sum); if ($sum <= 0xfffffff) { $r = $addr . $r; # if ($main::opt_debug) { print STDERR "$r\n"; } return HexExtend($r); } else { $r = "0000000"; } $a1 = substr($addr,-7); $addr = substr($addr,0,-7); $sum = hex($a1) + 1; $r = sprintf("%07x", $sum) . $r; if ($sum <= 0xfffffff) { $r = $addr . $r; # if ($main::opt_debug) { print STDERR "$r\n"; } return HexExtend($r); } else { $r = "00000000000000"; } $sum = hex($addr) + 1; if ($sum > 0xff) { $sum -= 0x100; } $r = sprintf("%02x", $sum) . $r; # if ($main::opt_debug) { print STDERR "$r\n"; } return $r; } } # Extract symbols for all PC values found in profile sub ExtractSymbols { my $libs = shift; my $pcset = shift; my $symbols = {}; # Map each PC value to the containing library. To make this faster, # we sort libraries by their starting pc value (highest first), and # advance through the libraries as we advance the pc. Sometimes the # addresses of libraries may overlap with the addresses of the main # binary, so to make sure the libraries 'win', we iterate over the # libraries in reverse order (which assumes the binary doesn't start # in the middle of a library, which seems a fair assumption). my @pcs = (sort { $a cmp $b } keys(%{$pcset})); # pcset is 0-extended strings foreach my $lib (sort {$b->[1] cmp $a->[1]} @{$libs}) { my $libname = $lib->[0]; my $start = $lib->[1]; my $finish = $lib->[2]; my $offset = $lib->[3]; # Use debug library if it exists my $debug_libname = DebuggingLibrary($libname); if ($debug_libname) { $libname = $debug_libname; } # Get list of pcs that belong in this library. my $contained = []; my ($start_pc_index, $finish_pc_index); # Find smallest finish_pc_index such that $finish < $pc[$finish_pc_index]. for ($finish_pc_index = $#pcs + 1; $finish_pc_index > 0; $finish_pc_index--) { last if $pcs[$finish_pc_index - 1] le $finish; } # Find smallest start_pc_index such that $start <= $pc[$start_pc_index]. for ($start_pc_index = $finish_pc_index; $start_pc_index > 0; $start_pc_index--) { last if $pcs[$start_pc_index - 1] lt $start; } # This keeps PC values higher than $pc[$finish_pc_index] in @pcs, # in case there are overlaps in libraries and the main binary. @{$contained} = splice(@pcs, $start_pc_index, $finish_pc_index - $start_pc_index); # Map to symbols MapToSymbols($libname, AddressSub($start, $offset), $contained, $symbols); } return $symbols; } # Map list of PC values to symbols for a given image sub MapToSymbols { my $image = shift; my $offset = shift; my $pclist = shift; my $symbols = shift; my $debug = 0; # Ignore empty binaries if ($#{$pclist} < 0) { return; } # Figure out the addr2line command to use my $addr2line = $obj_tool_map{"addr2line"}; my $cmd = ShellEscape($addr2line, "-f", "-C", "-e", $image); if (exists $obj_tool_map{"addr2line_pdb"}) { $addr2line = $obj_tool_map{"addr2line_pdb"}; $cmd = ShellEscape($addr2line, "--demangle", "-f", "-C", "-e", $image); } # If "addr2line" isn't installed on the system at all, just use # nm to get what info we can (function names, but not line numbers). if (system(ShellEscape($addr2line, "--help") . " >$dev_null 2>&1") != 0) { MapSymbolsWithNM($image, $offset, $pclist, $symbols); return; } # "addr2line -i" can produce a variable number of lines per input # address, with no separator that allows us to tell when data for # the next address starts. So we find the address for a special # symbol (_fini) and interleave this address between all real # addresses passed to addr2line. The name of this special symbol # can then be used as a separator. $sep_address = undef; # May be filled in by MapSymbolsWithNM() my $nm_symbols = {}; MapSymbolsWithNM($image, $offset, $pclist, $nm_symbols); if (defined($sep_address)) { # Only add " -i" to addr2line if the binary supports it. # addr2line --help returns 0, but not if it sees an unknown flag first. if (system("$cmd -i --help >$dev_null 2>&1") == 0) { $cmd .= " -i"; } else { $sep_address = undef; # no need for sep_address if we don't support -i } } # Make file with all PC values with intervening 'sep_address' so # that we can reliably detect the end of inlined function list open(ADDRESSES, ">$main::tmpfile_sym") || error("$main::tmpfile_sym: $!\n"); if ($debug) { print("---- $image ---\n"); } for (my $i = 0; $i <= $#{$pclist}; $i++) { # addr2line always reads hex addresses, and does not need '0x' prefix. if ($debug) { printf STDERR ("%s\n", $pclist->[$i]); } printf ADDRESSES ("%s\n", AddressSub($pclist->[$i], $offset)); if (defined($sep_address)) { printf ADDRESSES ("%s\n", $sep_address); } } close(ADDRESSES); if ($debug) { print("----\n"); system("cat", $main::tmpfile_sym); print("----\n"); system("$cmd < " . ShellEscape($main::tmpfile_sym)); print("----\n"); } open(SYMBOLS, "$cmd <" . ShellEscape($main::tmpfile_sym) . " |") || error("$cmd: $!\n"); my $count = 0; # Index in pclist while () { # Read fullfunction and filelineinfo from next pair of lines s/\r?\n$//g; my $fullfunction = $_; $_ = ; s/\r?\n$//g; my $filelinenum = $_; if (defined($sep_address) && $fullfunction eq $sep_symbol) { # Terminating marker for data for this address $count++; next; } $filelinenum =~ s|\\|/|g; # turn windows-style paths into unix-style paths my $pcstr = $pclist->[$count]; my $function = ShortFunctionName($fullfunction); my $nms = $nm_symbols->{$pcstr}; if (defined($nms)) { if ($fullfunction eq '??') { # nm found a symbol for us. $function = $nms->[0]; $fullfunction = $nms->[2]; } else { # MapSymbolsWithNM tags each routine with its starting address, # useful in case the image has multiple occurrences of this # routine. (It uses a syntax that resembles template paramters, # that are automatically stripped out by ShortFunctionName().) # addr2line does not provide the same information. So we check # if nm disambiguated our symbol, and if so take the annotated # (nm) version of the routine-name. TODO(csilvers): this won't # catch overloaded, inlined symbols, which nm doesn't see. # Better would be to do a check similar to nm's, in this fn. if ($nms->[2] =~ m/^\Q$function\E/) { # sanity check it's the right fn $function = $nms->[0]; $fullfunction = $nms->[2]; } } } # Prepend to accumulated symbols for pcstr # (so that caller comes before callee) my $sym = $symbols->{$pcstr}; if (!defined($sym)) { $sym = []; $symbols->{$pcstr} = $sym; } unshift(@{$sym}, $function, $filelinenum, $fullfunction); if ($debug) { printf STDERR ("%s => [%s]\n", $pcstr, join(" ", @{$sym})); } if (!defined($sep_address)) { # Inlining is off, so this entry ends immediately $count++; } } close(SYMBOLS); } # Use nm to map the list of referenced PCs to symbols. Return true iff we # are able to read procedure information via nm. sub MapSymbolsWithNM { my $image = shift; my $offset = shift; my $pclist = shift; my $symbols = shift; # Get nm output sorted by increasing address my $symbol_table = GetProcedureBoundaries($image, "."); if (!%{$symbol_table}) { return 0; } # Start addresses are already the right length (8 or 16 hex digits). my @names = sort { $symbol_table->{$a}->[0] cmp $symbol_table->{$b}->[0] } keys(%{$symbol_table}); if ($#names < 0) { # No symbols: just use addresses foreach my $pc (@{$pclist}) { my $pcstr = "0x" . $pc; $symbols->{$pc} = [$pcstr, "?", $pcstr]; } return 0; } # Sort addresses so we can do a join against nm output my $index = 0; my $fullname = $names[0]; my $name = ShortFunctionName($fullname); foreach my $pc (sort { $a cmp $b } @{$pclist}) { # Adjust for mapped offset my $mpc = AddressSub($pc, $offset); while (($index < $#names) && ($mpc ge $symbol_table->{$fullname}->[1])){ $index++; $fullname = $names[$index]; $name = ShortFunctionName($fullname); } if ($mpc lt $symbol_table->{$fullname}->[1]) { $symbols->{$pc} = [$name, "?", $fullname]; } else { my $pcstr = "0x" . $pc; $symbols->{$pc} = [$pcstr, "?", $pcstr]; } } return 1; } sub ShortFunctionName { my $function = shift; while ($function =~ s/\([^()]*\)(\s*const)?//g) { } # Argument types while ($function =~ s/<[^<>]*>//g) { } # Remove template arguments $function =~ s/^.*\s+(\w+::)/$1/; # Remove leading type return $function; } # Trim overly long symbols found in disassembler output sub CleanDisassembly { my $d = shift; while ($d =~ s/\([^()%]*\)(\s*const)?//g) { } # Argument types, not (%rax) while ($d =~ s/(\w+)<[^<>]*>/$1/g) { } # Remove template arguments return $d; } # Clean file name for display sub CleanFileName { my ($f) = @_; $f =~ s|^/proc/self/cwd/||; $f =~ s|^\./||; return $f; } # Make address relative to section and clean up for display sub UnparseAddress { my ($offset, $address) = @_; $address = AddressSub($address, $offset); $address =~ s/^0x//; $address =~ s/^0*//; return $address; } ##### Miscellaneous ##### # Find the right versions of the above object tools to use. The # argument is the program file being analyzed, and should be an ELF # 32-bit or ELF 64-bit executable file. The location of the tools # is determined by considering the following options in this order: # 1) --tools option, if set # 2) JEPROF_TOOLS environment variable, if set # 3) the environment sub ConfigureObjTools { my $prog_file = shift; # Check for the existence of $prog_file because /usr/bin/file does not # predictably return error status in prod. (-e $prog_file) || error("$prog_file does not exist.\n"); my $file_type = undef; if (-e "/usr/bin/file") { # Follow symlinks (at least for systems where "file" supports that). my $escaped_prog_file = ShellEscape($prog_file); $file_type = `/usr/bin/file -L $escaped_prog_file 2>$dev_null || /usr/bin/file $escaped_prog_file`; } elsif ($^O == "MSWin32") { $file_type = "MS Windows"; } else { print STDERR "WARNING: Can't determine the file type of $prog_file"; } if ($file_type =~ /64-bit/) { # Change $address_length to 16 if the program file is ELF 64-bit. # We can't detect this from many (most?) heap or lock contention # profiles, since the actual addresses referenced are generally in low # memory even for 64-bit programs. $address_length = 16; } if ($file_type =~ /MS Windows/) { # For windows, we provide a version of nm and addr2line as part of # the opensource release, which is capable of parsing # Windows-style PDB executables. It should live in the path, or # in the same directory as jeprof. $obj_tool_map{"nm_pdb"} = "nm-pdb"; $obj_tool_map{"addr2line_pdb"} = "addr2line-pdb"; } if ($file_type =~ /Mach-O/) { # OS X uses otool to examine Mach-O files, rather than objdump. $obj_tool_map{"otool"} = "otool"; $obj_tool_map{"addr2line"} = "false"; # no addr2line $obj_tool_map{"objdump"} = "false"; # no objdump } # Go fill in %obj_tool_map with the pathnames to use: foreach my $tool (keys %obj_tool_map) { $obj_tool_map{$tool} = ConfigureTool($obj_tool_map{$tool}); } } # Returns the path of a caller-specified object tool. If --tools or # JEPROF_TOOLS are specified, then returns the full path to the tool # with that prefix. Otherwise, returns the path unmodified (which # means we will look for it on PATH). sub ConfigureTool { my $tool = shift; my $path; # --tools (or $JEPROF_TOOLS) is a comma separated list, where each # item is either a) a pathname prefix, or b) a map of the form # :. First we look for an entry of type (b) for our # tool. If one is found, we use it. Otherwise, we consider all the # pathname prefixes in turn, until one yields an existing file. If # none does, we use a default path. my $tools = $main::opt_tools || $ENV{"JEPROF_TOOLS"} || ""; if ($tools =~ m/(,|^)\Q$tool\E:([^,]*)/) { $path = $2; # TODO(csilvers): sanity-check that $path exists? Hard if it's relative. } elsif ($tools ne '') { foreach my $prefix (split(',', $tools)) { next if ($prefix =~ /:/); # ignore "tool:fullpath" entries in the list if (-x $prefix . $tool) { $path = $prefix . $tool; last; } } if (!$path) { error("No '$tool' found with prefix specified by " . "--tools (or \$JEPROF_TOOLS) '$tools'\n"); } } else { # ... otherwise use the version that exists in the same directory as # jeprof. If there's nothing there, use $PATH. $0 =~ m,[^/]*$,; # this is everything after the last slash my $dirname = $`; # this is everything up to and including the last slash if (-x "$dirname$tool") { $path = "$dirname$tool"; } else { $path = $tool; } } if ($main::opt_debug) { print STDERR "Using '$path' for '$tool'.\n"; } return $path; } sub ShellEscape { my @escaped_words = (); foreach my $word (@_) { my $escaped_word = $word; if ($word =~ m![^a-zA-Z0-9/.,_=-]!) { # check for anything not in whitelist $escaped_word =~ s/'/'\\''/; $escaped_word = "'$escaped_word'"; } push(@escaped_words, $escaped_word); } return join(" ", @escaped_words); } sub cleanup { unlink($main::tmpfile_sym); unlink(keys %main::tempnames); # We leave any collected profiles in $HOME/jeprof in case the user wants # to look at them later. We print a message informing them of this. if ((scalar(@main::profile_files) > 0) && defined($main::collected_profile)) { if (scalar(@main::profile_files) == 1) { print STDERR "Dynamically gathered profile is in $main::collected_profile\n"; } print STDERR "If you want to investigate this profile further, you can do:\n"; print STDERR "\n"; print STDERR " jeprof \\\n"; print STDERR " $main::prog \\\n"; print STDERR " $main::collected_profile\n"; print STDERR "\n"; } } sub sighandler { cleanup(); exit(1); } sub error { my $msg = shift; print STDERR $msg; cleanup(); exit(1); } # Run $nm_command and get all the resulting procedure boundaries whose # names match "$regexp" and returns them in a hashtable mapping from # procedure name to a two-element vector of [start address, end address] sub GetProcedureBoundariesViaNm { my $escaped_nm_command = shift; # shell-escaped my $regexp = shift; my $symbol_table = {}; open(NM, "$escaped_nm_command |") || error("$escaped_nm_command: $!\n"); my $last_start = "0"; my $routine = ""; while () { s/\r//g; # turn windows-looking lines into unix-looking lines if (m/^\s*([0-9a-f]+) (.) (..*)/) { my $start_val = $1; my $type = $2; my $this_routine = $3; # It's possible for two symbols to share the same address, if # one is a zero-length variable (like __start_google_malloc) or # one symbol is a weak alias to another (like __libc_malloc). # In such cases, we want to ignore all values except for the # actual symbol, which in nm-speak has type "T". The logic # below does this, though it's a bit tricky: what happens when # we have a series of lines with the same address, is the first # one gets queued up to be processed. However, it won't # *actually* be processed until later, when we read a line with # a different address. That means that as long as we're reading # lines with the same address, we have a chance to replace that # item in the queue, which we do whenever we see a 'T' entry -- # that is, a line with type 'T'. If we never see a 'T' entry, # we'll just go ahead and process the first entry (which never # got touched in the queue), and ignore the others. if ($start_val eq $last_start && $type =~ /t/i) { # We are the 'T' symbol at this address, replace previous symbol. $routine = $this_routine; next; } elsif ($start_val eq $last_start) { # We're not the 'T' symbol at this address, so ignore us. next; } if ($this_routine eq $sep_symbol) { $sep_address = HexExtend($start_val); } # Tag this routine with the starting address in case the image # has multiple occurrences of this routine. We use a syntax # that resembles template parameters that are automatically # stripped out by ShortFunctionName() $this_routine .= "<$start_val>"; if (defined($routine) && $routine =~ m/$regexp/) { $symbol_table->{$routine} = [HexExtend($last_start), HexExtend($start_val)]; } $last_start = $start_val; $routine = $this_routine; } elsif (m/^Loaded image name: (.+)/) { # The win32 nm workalike emits information about the binary it is using. if ($main::opt_debug) { print STDERR "Using Image $1\n"; } } elsif (m/^PDB file name: (.+)/) { # The win32 nm workalike emits information about the pdb it is using. if ($main::opt_debug) { print STDERR "Using PDB $1\n"; } } } close(NM); # Handle the last line in the nm output. Unfortunately, we don't know # how big this last symbol is, because we don't know how big the file # is. For now, we just give it a size of 0. # TODO(csilvers): do better here. if (defined($routine) && $routine =~ m/$regexp/) { $symbol_table->{$routine} = [HexExtend($last_start), HexExtend($last_start)]; } return $symbol_table; } # Gets the procedure boundaries for all routines in "$image" whose names # match "$regexp" and returns them in a hashtable mapping from procedure # name to a two-element vector of [start address, end address]. # Will return an empty map if nm is not installed or not working properly. sub GetProcedureBoundaries { my $image = shift; my $regexp = shift; # If $image doesn't start with /, then put ./ in front of it. This works # around an obnoxious bug in our probing of nm -f behavior. # "nm -f $image" is supposed to fail on GNU nm, but if: # # a. $image starts with [BbSsPp] (for example, bin/foo/bar), AND # b. you have a.out in your current directory (a not uncommon occurence) # # then "nm -f $image" succeeds because -f only looks at the first letter of # the argument, which looks valid because it's [BbSsPp], and then since # there's no image provided, it looks for a.out and finds it. # # This regex makes sure that $image starts with . or /, forcing the -f # parsing to fail since . and / are not valid formats. $image =~ s#^[^/]#./$&#; # For libc libraries, the copy in /usr/lib/debug contains debugging symbols my $debugging = DebuggingLibrary($image); if ($debugging) { $image = $debugging; } my $nm = $obj_tool_map{"nm"}; my $cppfilt = $obj_tool_map{"c++filt"}; # nm can fail for two reasons: 1) $image isn't a debug library; 2) nm # binary doesn't support --demangle. In addition, for OS X we need # to use the -f flag to get 'flat' nm output (otherwise we don't sort # properly and get incorrect results). Unfortunately, GNU nm uses -f # in an incompatible way. So first we test whether our nm supports # --demangle and -f. my $demangle_flag = ""; my $cppfilt_flag = ""; my $to_devnull = ">$dev_null 2>&1"; if (system(ShellEscape($nm, "--demangle", "image") . $to_devnull) == 0) { # In this mode, we do "nm --demangle " $demangle_flag = "--demangle"; $cppfilt_flag = ""; } elsif (system(ShellEscape($cppfilt, $image) . $to_devnull) == 0) { # In this mode, we do "nm | c++filt" $cppfilt_flag = " | " . ShellEscape($cppfilt); }; my $flatten_flag = ""; if (system(ShellEscape($nm, "-f", $image) . $to_devnull) == 0) { $flatten_flag = "-f"; } # Finally, in the case $imagie isn't a debug library, we try again with # -D to at least get *exported* symbols. If we can't use --demangle, # we use c++filt instead, if it exists on this system. my @nm_commands = (ShellEscape($nm, "-n", $flatten_flag, $demangle_flag, $image) . " 2>$dev_null $cppfilt_flag", ShellEscape($nm, "-D", "-n", $flatten_flag, $demangle_flag, $image) . " 2>$dev_null $cppfilt_flag", # 6nm is for Go binaries ShellEscape("6nm", "$image") . " 2>$dev_null | sort", ); # If the executable is an MS Windows PDB-format executable, we'll # have set up obj_tool_map("nm_pdb"). In this case, we actually # want to use both unix nm and windows-specific nm_pdb, since # PDB-format executables can apparently include dwarf .o files. if (exists $obj_tool_map{"nm_pdb"}) { push(@nm_commands, ShellEscape($obj_tool_map{"nm_pdb"}, "--demangle", $image) . " 2>$dev_null"); } foreach my $nm_command (@nm_commands) { my $symbol_table = GetProcedureBoundariesViaNm($nm_command, $regexp); return $symbol_table if (%{$symbol_table}); } my $symbol_table = {}; return $symbol_table; } # The test vectors for AddressAdd/Sub/Inc are 8-16-nibble hex strings. # To make them more readable, we add underscores at interesting places. # This routine removes the underscores, producing the canonical representation # used by jeprof to represent addresses, particularly in the tested routines. sub CanonicalHex { my $arg = shift; return join '', (split '_',$arg); } # Unit test for AddressAdd: sub AddressAddUnitTest { my $test_data_8 = shift; my $test_data_16 = shift; my $error_count = 0; my $fail_count = 0; my $pass_count = 0; # print STDERR "AddressAddUnitTest: ", 1+$#{$test_data_8}, " tests\n"; # First a few 8-nibble addresses. Note that this implementation uses # plain old arithmetic, so a quick sanity check along with verifying what # happens to overflow (we want it to wrap): $address_length = 8; foreach my $row (@{$test_data_8}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressAdd ($row->[0], $row->[1]); if ($sum ne $row->[2]) { printf STDERR "ERROR: %s != %s + %s = %s\n", $sum, $row->[0], $row->[1], $row->[2]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressAdd 32-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count = $fail_count; $fail_count = 0; $pass_count = 0; # Now 16-nibble addresses. $address_length = 16; foreach my $row (@{$test_data_16}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressAdd (CanonicalHex($row->[0]), CanonicalHex($row->[1])); my $expected = join '', (split '_',$row->[2]); if ($sum ne CanonicalHex($row->[2])) { printf STDERR "ERROR: %s != %s + %s = %s\n", $sum, $row->[0], $row->[1], $row->[2]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressAdd 64-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count += $fail_count; return $error_count; } # Unit test for AddressSub: sub AddressSubUnitTest { my $test_data_8 = shift; my $test_data_16 = shift; my $error_count = 0; my $fail_count = 0; my $pass_count = 0; # print STDERR "AddressSubUnitTest: ", 1+$#{$test_data_8}, " tests\n"; # First a few 8-nibble addresses. Note that this implementation uses # plain old arithmetic, so a quick sanity check along with verifying what # happens to overflow (we want it to wrap): $address_length = 8; foreach my $row (@{$test_data_8}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressSub ($row->[0], $row->[1]); if ($sum ne $row->[3]) { printf STDERR "ERROR: %s != %s - %s = %s\n", $sum, $row->[0], $row->[1], $row->[3]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressSub 32-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count = $fail_count; $fail_count = 0; $pass_count = 0; # Now 16-nibble addresses. $address_length = 16; foreach my $row (@{$test_data_16}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressSub (CanonicalHex($row->[0]), CanonicalHex($row->[1])); if ($sum ne CanonicalHex($row->[3])) { printf STDERR "ERROR: %s != %s - %s = %s\n", $sum, $row->[0], $row->[1], $row->[3]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressSub 64-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count += $fail_count; return $error_count; } # Unit test for AddressInc: sub AddressIncUnitTest { my $test_data_8 = shift; my $test_data_16 = shift; my $error_count = 0; my $fail_count = 0; my $pass_count = 0; # print STDERR "AddressIncUnitTest: ", 1+$#{$test_data_8}, " tests\n"; # First a few 8-nibble addresses. Note that this implementation uses # plain old arithmetic, so a quick sanity check along with verifying what # happens to overflow (we want it to wrap): $address_length = 8; foreach my $row (@{$test_data_8}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressInc ($row->[0]); if ($sum ne $row->[4]) { printf STDERR "ERROR: %s != %s + 1 = %s\n", $sum, $row->[0], $row->[4]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressInc 32-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count = $fail_count; $fail_count = 0; $pass_count = 0; # Now 16-nibble addresses. $address_length = 16; foreach my $row (@{$test_data_16}) { if ($main::opt_debug and $main::opt_test) { print STDERR "@{$row}\n"; } my $sum = AddressInc (CanonicalHex($row->[0])); if ($sum ne CanonicalHex($row->[4])) { printf STDERR "ERROR: %s != %s + 1 = %s\n", $sum, $row->[0], $row->[4]; ++$fail_count; } else { ++$pass_count; } } printf STDERR "AddressInc 64-bit tests: %d passes, %d failures\n", $pass_count, $fail_count; $error_count += $fail_count; return $error_count; } # Driver for unit tests. # Currently just the address add/subtract/increment routines for 64-bit. sub RunUnitTests { my $error_count = 0; # This is a list of tuples [a, b, a+b, a-b, a+1] my $unit_test_data_8 = [ [qw(aaaaaaaa 50505050 fafafafa 5a5a5a5a aaaaaaab)], [qw(50505050 aaaaaaaa fafafafa a5a5a5a6 50505051)], [qw(ffffffff aaaaaaaa aaaaaaa9 55555555 00000000)], [qw(00000001 ffffffff 00000000 00000002 00000002)], [qw(00000001 fffffff0 fffffff1 00000011 00000002)], ]; my $unit_test_data_16 = [ # The implementation handles data in 7-nibble chunks, so those are the # interesting boundaries. [qw(aaaaaaaa 50505050 00_000000f_afafafa 00_0000005_a5a5a5a 00_000000a_aaaaaab)], [qw(50505050 aaaaaaaa 00_000000f_afafafa ff_ffffffa_5a5a5a6 00_0000005_0505051)], [qw(ffffffff aaaaaaaa 00_000001a_aaaaaa9 00_0000005_5555555 00_0000010_0000000)], [qw(00000001 ffffffff 00_0000010_0000000 ff_ffffff0_0000002 00_0000000_0000002)], [qw(00000001 fffffff0 00_000000f_ffffff1 ff_ffffff0_0000011 00_0000000_0000002)], [qw(00_a00000a_aaaaaaa 50505050 00_a00000f_afafafa 00_a000005_a5a5a5a 00_a00000a_aaaaaab)], [qw(0f_fff0005_0505050 aaaaaaaa 0f_fff000f_afafafa 0f_ffefffa_5a5a5a6 0f_fff0005_0505051)], [qw(00_000000f_fffffff 01_800000a_aaaaaaa 01_800001a_aaaaaa9 fe_8000005_5555555 00_0000010_0000000)], [qw(00_0000000_0000001 ff_fffffff_fffffff 00_0000000_0000000 00_0000000_0000002 00_0000000_0000002)], [qw(00_0000000_0000001 ff_fffffff_ffffff0 ff_fffffff_ffffff1 00_0000000_0000011 00_0000000_0000002)], ]; $error_count += AddressAddUnitTest($unit_test_data_8, $unit_test_data_16); $error_count += AddressSubUnitTest($unit_test_data_8, $unit_test_data_16); $error_count += AddressIncUnitTest($unit_test_data_8, $unit_test_data_16); if ($error_count > 0) { print STDERR $error_count, " errors: FAILED\n"; } else { print STDERR "PASS\n"; } exit ($error_count); }