/* $NetBSD: fdt_machdep.c,v 1.99.2.1 2023/10/20 16:13:04 martin Exp $ */ /*- * Copyright (c) 2015-2017 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: fdt_machdep.c,v 1.99.2.1 2023/10/20 16:13:04 martin Exp $"); #include "opt_arm_debug.h" #include "opt_bootconfig.h" #include "opt_cpuoptions.h" #include "opt_ddb.h" #include "opt_efi.h" #include "opt_machdep.h" #include "opt_md.h" #include "opt_multiprocessor.h" #include "genfb.h" #include "ukbd.h" #include "wsdisplay.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EFI_RUNTIME #include #endif #if NWSDISPLAY > 0 && NGENFB > 0 #include #endif #if NUKBD > 0 #include #endif #if NWSDISPLAY > 0 #include #endif #ifdef MEMORY_DISK_DYNAMIC #include #endif #ifndef FDT_MAX_BOOT_STRING #define FDT_MAX_BOOT_STRING 1024 #endif BootConfig bootconfig; char bootargs[FDT_MAX_BOOT_STRING] = ""; char *boot_args = NULL; /* filled in before cleaning bss. keep in .data */ u_long uboot_args[4] __attribute__((__section__(".data"))); const uint8_t *fdt_addr_r __attribute__((__section__(".data"))); static uint64_t initrd_start, initrd_end; static uint64_t rndseed_start, rndseed_end; /* our on-disk seed */ static uint64_t efirng_start, efirng_end; /* firmware's EFI RNG output */ #include #include #define FDT_BUF_SIZE (512*1024) static uint8_t fdt_data[FDT_BUF_SIZE]; extern char KERNEL_BASE_phys[]; #define KERNEL_BASE_PHYS ((paddr_t)KERNEL_BASE_phys) static void fdt_update_stdout_path(void); static void fdt_device_register(device_t, void *); static void fdt_device_register_post_config(device_t, void *); static void fdt_cpu_rootconf(void); static void fdt_reset(void); static void fdt_powerdown(void); #if BYTE_ORDER == BIG_ENDIAN static void fdt_update_fb_format(void); #endif static void earlyconsputc(dev_t dev, int c) { uartputc(c); } static int earlyconsgetc(dev_t dev) { return -1; } static struct consdev earlycons = { .cn_putc = earlyconsputc, .cn_getc = earlyconsgetc, .cn_pollc = nullcnpollc, }; #ifdef VERBOSE_INIT_ARM #define VPRINTF(...) printf(__VA_ARGS__) #else #define VPRINTF(...) __nothing #endif static void fdt_add_dram_blocks(const struct fdt_memory *m, void *arg) { BootConfig *bc = arg; VPRINTF(" %" PRIx64 " - %" PRIx64 "\n", m->start, m->end - 1); bc->dram[bc->dramblocks].address = m->start; bc->dram[bc->dramblocks].pages = (m->end - m->start) / PAGE_SIZE; bc->dramblocks++; } static int nfdt_physmem = 0; static struct boot_physmem fdt_physmem[FDT_MEMORY_RANGES]; static void fdt_add_boot_physmem(const struct fdt_memory *m, void *arg) { const paddr_t saddr = round_page(m->start); const paddr_t eaddr = trunc_page(m->end); VPRINTF(" %" PRIx64 " - %" PRIx64, m->start, m->end - 1); if (saddr >= eaddr) { VPRINTF(" skipped\n"); return; } VPRINTF("\n"); struct boot_physmem *bp = &fdt_physmem[nfdt_physmem++]; KASSERT(nfdt_physmem <= FDT_MEMORY_RANGES); bp->bp_start = atop(saddr); bp->bp_pages = atop(eaddr) - bp->bp_start; bp->bp_freelist = VM_FREELIST_DEFAULT; #ifdef PMAP_NEED_ALLOC_POOLPAGE const uint64_t memory_size = *(uint64_t *)arg; if (atop(memory_size) > bp->bp_pages) { arm_poolpage_vmfreelist = VM_FREELIST_DIRECTMAP; bp->bp_freelist = VM_FREELIST_DIRECTMAP; } #endif } static void fdt_print_memory(const struct fdt_memory *m, void *arg) { VPRINTF("FDT /memory @ 0x%" PRIx64 " size 0x%" PRIx64 "\n", m->start, m->end - m->start); } /* * Define usable memory regions. */ static void fdt_build_bootconfig(uint64_t mem_start, uint64_t mem_end) { BootConfig *bc = &bootconfig; uint64_t addr, size; int index; const uint64_t initrd_size = round_page(initrd_end) - trunc_page(initrd_start); if (initrd_size > 0) fdt_memory_remove_range(trunc_page(initrd_start), initrd_size); const uint64_t rndseed_size = round_page(rndseed_end) - trunc_page(rndseed_start); if (rndseed_size > 0) fdt_memory_remove_range(trunc_page(rndseed_start), rndseed_size); const uint64_t efirng_size = round_page(efirng_end) - trunc_page(efirng_start); if (efirng_size > 0) fdt_memory_remove_range(trunc_page(efirng_start), efirng_size); const int framebuffer = OF_finddevice("/chosen/framebuffer"); if (framebuffer >= 0) { for (index = 0; fdtbus_get_reg64(framebuffer, index, &addr, &size) == 0; index++) { fdt_memory_remove_range(addr, size); } } VPRINTF("Usable memory:\n"); bc->dramblocks = 0; fdt_memory_foreach(fdt_add_dram_blocks, bc); } static void fdt_probe_range(const char *startname, const char *endname, uint64_t *pstart, uint64_t *pend) { int chosen, len; const void *start_data, *end_data; *pstart = *pend = 0; chosen = OF_finddevice("/chosen"); if (chosen < 0) return; start_data = fdtbus_get_prop(chosen, startname, &len); end_data = fdtbus_get_prop(chosen, endname, NULL); if (start_data == NULL || end_data == NULL) return; switch (len) { case 4: *pstart = be32dec(start_data); *pend = be32dec(end_data); break; case 8: *pstart = be64dec(start_data); *pend = be64dec(end_data); break; default: printf("Unsupported len %d for /chosen `%s'\n", len, startname); return; } } static void * fdt_map_range(uint64_t start, uint64_t end, uint64_t *psize, const char *purpose) { const paddr_t startpa = trunc_page(start); const paddr_t endpa = round_page(end); paddr_t pa; vaddr_t va; void *ptr; *psize = end - start; if (*psize == 0) return NULL; const vaddr_t voff = start & PAGE_MASK; va = uvm_km_alloc(kernel_map, *psize, 0, UVM_KMF_VAONLY | UVM_KMF_NOWAIT); if (va == 0) { printf("Failed to allocate VA for %s\n", purpose); return NULL; } ptr = (void *)(va + voff); for (pa = startpa; pa < endpa; pa += PAGE_SIZE, va += PAGE_SIZE) pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE, 0); pmap_update(pmap_kernel()); return ptr; } static void fdt_unmap_range(void *ptr, uint64_t size) { const char *start = ptr, *end = start + size; const vaddr_t startva = trunc_page((vaddr_t)(uintptr_t)start); const vaddr_t endva = round_page((vaddr_t)(uintptr_t)end); const vsize_t sz = endva - startva; pmap_kremove(startva, sz); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, startva, sz, UVM_KMF_VAONLY); } static void fdt_probe_initrd(uint64_t *pstart, uint64_t *pend) { *pstart = *pend = 0; #ifdef MEMORY_DISK_DYNAMIC fdt_probe_range("linux,initrd-start", "linux,initrd-end", pstart, pend); #endif } static void fdt_setup_initrd(void) { #ifdef MEMORY_DISK_DYNAMIC void *md_start; uint64_t initrd_size; md_start = fdt_map_range(initrd_start, initrd_end, &initrd_size, "initrd"); if (md_start == NULL) return; md_root_setconf(md_start, initrd_size); #endif } static void fdt_probe_rndseed(uint64_t *pstart, uint64_t *pend) { fdt_probe_range("netbsd,rndseed-start", "netbsd,rndseed-end", pstart, pend); } static void fdt_setup_rndseed(void) { uint64_t rndseed_size; void *rndseed; rndseed = fdt_map_range(rndseed_start, rndseed_end, &rndseed_size, "rndseed"); if (rndseed == NULL) return; rnd_seed(rndseed, rndseed_size); fdt_unmap_range(rndseed, rndseed_size); } static void fdt_probe_efirng(uint64_t *pstart, uint64_t *pend) { fdt_probe_range("netbsd,efirng-start", "netbsd,efirng-end", pstart, pend); } static struct krndsource efirng_source; static void fdt_setup_efirng(void) { uint64_t efirng_size; void *efirng; efirng = fdt_map_range(efirng_start, efirng_end, &efirng_size, "efirng"); if (efirng == NULL) return; rnd_attach_source(&efirng_source, "efirng", RND_TYPE_RNG, RND_FLAG_DEFAULT); /* * We don't really have specific information about the physical * process underlying the data provided by the firmware via the * EFI RNG API, so the entropy estimate here is heuristic. * What efiboot provides us is up to 4096 bytes of data from * the EFI RNG API, although in principle it may return short. * * The UEFI Specification (2.8 Errata A, February 2020[1]) says * * When a Deterministic Random Bit Generator (DRBG) is * used on the output of a (raw) entropy source, its * security level must be at least 256 bits. * * It's not entirely clear whether `it' refers to the DRBG or * the entropy source; if it refers to the DRBG, it's not * entirely clear how ANSI X9.31 3DES, one of the options for * DRBG in the UEFI spec, can provide a `256-bit security * level' because it has only 232 bits of inputs (three 56-bit * keys and one 64-bit block). That said, even if it provides * only 232 bits of entropy, that's enough to prevent all * attacks and we probably get a few more bits from sampling * the clock anyway. * * In the event we get raw samples, e.g. the bits sampled by a * ring oscillator, we hope that the samples have at least half * a bit of entropy per bit of data -- and efiboot tries to * draw 4096 bytes to provide plenty of slop. Hence we divide * the total number of bits by two and clamp at 256. There are * ways this could go wrong, but on most machines it should * behave reasonably. * * [1] https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_A_Feb14.pdf */ rnd_add_data(&efirng_source, efirng, efirng_size, MIN(256, efirng_size*NBBY/2)); explicit_memset(efirng, 0, efirng_size); fdt_unmap_range(efirng, efirng_size); } #ifdef EFI_RUNTIME static void fdt_map_efi_runtime(const char *prop, enum arm_efirt_mem_type type) { int len; const int chosen_off = fdt_path_offset(fdt_data, "/chosen"); if (chosen_off < 0) return; const uint64_t *map = fdt_getprop(fdt_data, chosen_off, prop, &len); if (map == NULL) return; while (len >= 24) { const paddr_t pa = be64toh(map[0]); const vaddr_t va = be64toh(map[1]); const size_t sz = be64toh(map[2]); VPRINTF("%s: %s %#" PRIxPADDR "-%#" PRIxVADDR " (%#" PRIxVADDR "-%#" PRIxVSIZE ")\n", __func__, prop, pa, pa + sz - 1, va, va + sz - 1); arm_efirt_md_map_range(va, pa, sz, type); map += 3; len -= 24; } } #endif vaddr_t initarm(void *arg) { const struct arm_platform *plat; uint64_t memory_start, memory_end; /* set temporally to work printf()/panic() even before consinit() */ cn_tab = &earlycons; /* Load FDT */ int error = fdt_check_header(fdt_addr_r); if (error != 0) panic("fdt_check_header failed: %s", fdt_strerror(error)); /* If the DTB is too big, try to pack it in place first. */ if (fdt_totalsize(fdt_addr_r) > sizeof(fdt_data)) (void)fdt_pack(__UNCONST(fdt_addr_r)); error = fdt_open_into(fdt_addr_r, fdt_data, sizeof(fdt_data)); if (error != 0) panic("fdt_move failed: %s", fdt_strerror(error)); fdtbus_init(fdt_data); /* Lookup platform specific backend */ plat = arm_fdt_platform(); if (plat == NULL) panic("Kernel does not support this device"); /* Early console may be available, announce ourselves. */ VPRINTF("FDT<%p>\n", fdt_addr_r); const int chosen = OF_finddevice("/chosen"); if (chosen >= 0) OF_getprop(chosen, "bootargs", bootargs, sizeof(bootargs)); boot_args = bootargs; /* Heads up ... Setup the CPU / MMU / TLB functions. */ VPRINTF("cpufunc\n"); if (set_cpufuncs()) panic("cpu not recognized!"); /* * Memory is still identity/flat mapped this point so using ttbr for * l1pt VA is fine */ VPRINTF("devmap %p\n", plat->ap_devmap()); extern char ARM_BOOTSTRAP_LxPT[]; pmap_devmap_bootstrap((vaddr_t)ARM_BOOTSTRAP_LxPT, plat->ap_devmap()); VPRINTF("bootstrap\n"); plat->ap_bootstrap(); /* * If stdout-path is specified on the command line, override the * value in /chosen/stdout-path before initializing console. */ VPRINTF("stdout\n"); fdt_update_stdout_path(); #if BYTE_ORDER == BIG_ENDIAN /* * Most boards are configured to little-endian mode initially, and * switched to big-endian mode after kernel is loaded. In this case, * framebuffer seems byte-swapped to CPU. Override FDT to let * drivers know. */ VPRINTF("fb_format\n"); fdt_update_fb_format(); #endif /* * Done making changes to the FDT. */ fdt_pack(fdt_data); VPRINTF("consinit "); consinit(); VPRINTF("ok\n"); VPRINTF("uboot: args %#lx, %#lx, %#lx, %#lx\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); cpu_reset_address = fdt_reset; cpu_powerdown_address = fdt_powerdown; evbarm_device_register = fdt_device_register; evbarm_device_register_post_config = fdt_device_register_post_config; evbarm_cpu_rootconf = fdt_cpu_rootconf; /* Talk to the user */ printf("NetBSD/evbarm (fdt) booting ...\n"); #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif fdt_memory_get(&memory_start, &memory_end); fdt_memory_foreach(fdt_print_memory, NULL); #if !defined(_LP64) /* Cannot map memory above 4GB (remove last page as well) */ const uint64_t memory_limit = 0x100000000ULL - PAGE_SIZE; if (memory_end > memory_limit) { fdt_memory_remove_range(memory_limit , memory_end); memory_end = memory_limit; } #endif uint64_t memory_size = memory_end - memory_start; VPRINTF("%s: memory start %" PRIx64 " end %" PRIx64 " (len %" PRIx64 ")\n", __func__, memory_start, memory_end, memory_size); /* Parse ramdisk info */ fdt_probe_initrd(&initrd_start, &initrd_end); /* Parse our on-disk rndseed and the firmware's RNG from EFI */ fdt_probe_rndseed(&rndseed_start, &rndseed_end); fdt_probe_efirng(&efirng_start, &efirng_end); fdt_memory_remove_reserved(memory_start, memory_end); /* * Populate bootconfig structure for the benefit of dodumpsys */ VPRINTF("%s: fdt_build_bootconfig\n", __func__); fdt_build_bootconfig(memory_start, memory_end); /* Perform PT build and VM init */ cpu_kernel_vm_init(memory_start, memory_size); VPRINTF("bootargs: %s\n", bootargs); parse_mi_bootargs(boot_args); VPRINTF("Memory regions:\n"); /* Populate fdt_physmem / nfdt_physmem for initarm_common */ fdt_memory_foreach(fdt_add_boot_physmem, &memory_size); vaddr_t sp = initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, fdt_physmem, nfdt_physmem); /* * initarm_common flushes cache if required before AP start */ error = 0; if ((boothowto & RB_MD1) == 0) { VPRINTF("mpstart\n"); if (plat->ap_mpstart) error = plat->ap_mpstart(); } if (error) return sp; /* * Now we have APs started the pages used for stacks and L1PT can * be given to uvm */ extern char const __start__init_memory[]; extern char const __stop__init_memory[] __weak; if (__start__init_memory != __stop__init_memory) { const paddr_t spa = KERN_VTOPHYS((vaddr_t)__start__init_memory); const paddr_t epa = KERN_VTOPHYS((vaddr_t)__stop__init_memory); const paddr_t spg = atop(spa); const paddr_t epg = atop(epa); VPRINTF(" start %08lx end %08lx... " "loading in freelist %d\n", spa, epa, VM_FREELIST_DEFAULT); uvm_page_physload(spg, epg, spg, epg, VM_FREELIST_DEFAULT); } return sp; } static void fdt_update_stdout_path(void) { char *stdout_path, *ep; int stdout_path_len; char buf[256]; const int chosen_off = fdt_path_offset(fdt_data, "/chosen"); if (chosen_off == -1) return; if (get_bootconf_option(boot_args, "stdout-path", BOOTOPT_TYPE_STRING, &stdout_path) == 0) return; ep = strchr(stdout_path, ' '); stdout_path_len = ep ? (ep - stdout_path) : strlen(stdout_path); if (stdout_path_len >= sizeof(buf)) return; strncpy(buf, stdout_path, stdout_path_len); buf[stdout_path_len] = '\0'; fdt_setprop(fdt_data, chosen_off, "stdout-path", buf, stdout_path_len + 1); } void consinit(void) { static bool initialized = false; const struct arm_platform *plat = arm_fdt_platform(); const struct fdt_console *cons = fdtbus_get_console(); struct fdt_attach_args faa; u_int uart_freq = 0; if (initialized || cons == NULL) return; plat->ap_init_attach_args(&faa); faa.faa_phandle = fdtbus_get_stdout_phandle(); if (plat->ap_uart_freq != NULL) uart_freq = plat->ap_uart_freq(); cons->consinit(&faa, uart_freq); initialized = true; } void cpu_startup_hook(void) { #ifdef EFI_RUNTIME fdt_map_efi_runtime("netbsd,uefi-runtime-code", ARM_EFIRT_MEM_CODE); fdt_map_efi_runtime("netbsd,uefi-runtime-data", ARM_EFIRT_MEM_DATA); fdt_map_efi_runtime("netbsd,uefi-runtime-mmio", ARM_EFIRT_MEM_MMIO); #endif fdtbus_intr_init(); fdt_setup_rndseed(); fdt_setup_efirng(); } void delay(u_int us) { const struct arm_platform *plat = arm_fdt_platform(); plat->ap_delay(us); } static void fdt_detect_root_device(device_t dev) { int error, len; const int chosen = OF_finddevice("/chosen"); if (chosen < 0) return; if (of_hasprop(chosen, "netbsd,mbr") && of_hasprop(chosen, "netbsd,partition")) { struct mbr_sector mbr; uint8_t buf[DEV_BSIZE]; uint8_t hash[16]; const uint8_t *rhash; struct vnode *vp; MD5_CTX md5ctx; size_t resid; u_int part; /* * The bootloader has passed in a partition index and MD5 hash * of the MBR sector. Read the MBR of this device, calculate the * hash, and compare it with the value passed in. */ rhash = fdtbus_get_prop(chosen, "netbsd,mbr", &len); if (rhash == NULL || len != 16) return; of_getprop_uint32(chosen, "netbsd,partition", &part); if (part >= MAXPARTITIONS) return; vp = opendisk(dev); if (!vp) return; error = vn_rdwr(UIO_READ, vp, buf, sizeof(buf), 0, UIO_SYSSPACE, IO_NODELOCKED, NOCRED, &resid, NULL); VOP_CLOSE(vp, FREAD, NOCRED); vput(vp); if (error != 0) return; memcpy(&mbr, buf, sizeof(mbr)); MD5Init(&md5ctx); MD5Update(&md5ctx, (void *)&mbr, sizeof(mbr)); MD5Final(hash, &md5ctx); if (memcmp(rhash, hash, 16) == 0) { booted_device = dev; booted_partition = part; } return; } if (of_hasprop(chosen, "netbsd,gpt-guid")) { const struct uuid *guid = fdtbus_get_prop(chosen, "netbsd,gpt-guid", &len); if (guid == NULL || len != 16) return; char guidstr[UUID_STR_LEN]; uuid_snprintf(guidstr, sizeof(guidstr), guid); device_t dv = dkwedge_find_by_wname(guidstr); if (dv != NULL) booted_device = dv; return; } if (of_hasprop(chosen, "netbsd,gpt-label")) { const char *label = fdtbus_get_string(chosen, "netbsd,gpt-label"); if (label == NULL || *label == '\0') return; device_t dv = dkwedge_find_by_wname(label); if (dv != NULL) booted_device = dv; return; } if (of_hasprop(chosen, "netbsd,booted-mac-address")) { const uint8_t *macaddr = fdtbus_get_prop(chosen, "netbsd,booted-mac-address", &len); struct ifnet *ifp; if (macaddr == NULL || len != 6) return; int s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (memcmp(macaddr, CLLADDR(ifp->if_sadl), len) == 0) { device_t dv = device_find_by_xname(ifp->if_xname); if (dv != NULL) booted_device = dv; break; } } pserialize_read_exit(s); return; } } static void fdt_device_register(device_t self, void *aux) { const struct arm_platform *plat = arm_fdt_platform(); if (device_is_a(self, "armfdt")) { fdt_setup_initrd(); #if NWSDISPLAY > 0 && NGENFB > 0 /* * Setup framebuffer console, if present. */ arm_simplefb_preattach(); #endif } #if NWSDISPLAY > 0 && NGENFB > 0 if (device_is_a(self, "genfb")) { prop_dictionary_t dict = device_properties(self); prop_dictionary_set_uint64(dict, "simplefb-physaddr", arm_simplefb_physaddr()); } #endif if (plat && plat->ap_device_register) plat->ap_device_register(self, aux); } static void fdt_device_register_post_config(device_t self, void *aux) { #if NUKBD > 0 && NWSDISPLAY > 0 if (device_is_a(self, "wsdisplay")) { struct wsdisplay_softc *sc = device_private(self); if (wsdisplay_isconsole(sc)) ukbd_cnattach(); } #endif } static void fdt_cpu_rootconf(void) { device_t dev; deviter_t di; if (booted_device != NULL) return; for (dev = deviter_first(&di, 0); dev; dev = deviter_next(&di)) { if (device_class(dev) != DV_DISK) continue; fdt_detect_root_device(dev); if (booted_device != NULL) break; } deviter_release(&di); } static void fdt_reset(void) { const struct arm_platform *plat = arm_fdt_platform(); fdtbus_power_reset(); if (plat && plat->ap_reset) plat->ap_reset(); } static void fdt_powerdown(void) { fdtbus_power_poweroff(); } #if BYTE_ORDER == BIG_ENDIAN static void fdt_update_fb_format(void) { int off, len; const char *format, *replace; off = fdt_path_offset(fdt_data, "/chosen"); if (off < 0) return; for (;;) { off = fdt_node_offset_by_compatible(fdt_data, off, "simple-framebuffer"); if (off < 0) return; format = fdt_getprop(fdt_data, off, "format", &len); if (format == NULL) continue; replace = NULL; if (strcmp(format, "a8b8g8r8") == 0) replace = "r8g8b8a8"; else if (strcmp(format, "x8r8g8b8") == 0) replace = "b8g8r8x8"; if (replace != NULL) fdt_setprop(fdt_data, off, "format", replace, strlen(replace) + 1); } } #endif